Matching Items (1,011)
Filtering by

Clear all filters

151942-Thumbnail Image.png
Description
Researchers have postulated that math academic achievement increases student success in college (Lee, 2012; Silverman & Seidman, 2011; Vigdor, 2013), yet 80% of universities and 98% of community colleges require many of their first-year students to be placed in remedial courses (Bettinger & Long, 2009). Many high school graduates are

Researchers have postulated that math academic achievement increases student success in college (Lee, 2012; Silverman & Seidman, 2011; Vigdor, 2013), yet 80% of universities and 98% of community colleges require many of their first-year students to be placed in remedial courses (Bettinger & Long, 2009). Many high school graduates are entering college ill prepared for the rigors of higher education, lacking understanding of basic and important principles (ACT, 2012). The desire to increase academic achievement is a wide held aspiration in education and the idea of adapting instruction to individuals is one approach to accomplish this goal (Lalley & Gentile, 2009a). Frequently, adaptive learning environments rely on a mastery learning approach, it is thought that when students are afforded the opportunity to master the material, deeper and more meaningful learning is likely to occur. Researchers generally agree that the learning environment, the teaching approach, and the students' attributes are all important to understanding the conditions that promote academic achievement (Bandura, 1977; Bloom, 1968; Guskey, 2010; Cassen, Feinstein & Graham, 2008; Changeiywo, Wambugu & Wachanga, 2011; Lee, 2012; Schunk, 1991; Van Dinther, Dochy & Segers, 2011). The present study investigated the role of college students' affective attributes and skills, such as academic competence and academic resilience, in an adaptive mastery-based learning environment on their academic performance, while enrolled in a remedial mathematics course. The results showed that the combined influence of students' affective attributes and academic resilience had a statistically significant effect on students' academic performance. Further, the mastery-based learning environment also had a significant effect on their academic competence and academic performance.
ContributorsFoshee, Cecile Mary (Author) / Atkinson, Robert K (Thesis advisor) / Elliott, Stephen N. (Committee member) / Horan, John (Committee member) / Arizona State University (Publisher)
Created2013
151952-Thumbnail Image.png
Description
Microwave dielectrics are widely used to make resonators and filters in telecommunication systems. The production of thin films with high dielectric constant and low loss could potentially enable a marked reduction in the size of devices and systems. However, studies of these materials in thin film form are very sparse.

Microwave dielectrics are widely used to make resonators and filters in telecommunication systems. The production of thin films with high dielectric constant and low loss could potentially enable a marked reduction in the size of devices and systems. However, studies of these materials in thin film form are very sparse. In this research, experiments were carried out on practical high-performance dielectrics including ZrTiO4-ZnNb2O6 (ZTZN) and Ba(Co,Zn)1/3Nb2/3O3 (BCZN) with high dielectric constant and low loss tangent. Thin films were deposited by laser ablation on various substrates, with a systematical study of growth conditions like substrate temperature, oxygen pressure and annealing to optimize the film quality, and the compositional, microstructural, optical and electric properties were characterized. The deposited ZTZN films were randomly oriented polycrystalline on Si substrate and textured on MgO substrate with a tetragonal lattice change at elevated temperature. The BCZN films deposited on MgO substrate showed superior film quality relative to that on other substrates, which grow epitaxially with an orientation of (001) // MgO (001) and (100) // MgO (100) when substrate temperature was above 500 oC. In-situ annealing at growth temperature in 200 mTorr oxygen pressure was found to enhance the quality of the films, reducing the peak width of the X-ray Diffraction (XRD) rocking curve to 0.53o and the χmin of channeling Rutherford Backscattering Spectrometry (RBS) to 8.8% when grown at 800oC. Atomic Force Microscopy (AFM) was used to study the topography and found a monotonic decrease in the surface roughness when the growth temperature increased. Optical absorption and transmission measurements were used to determine the energy bandgap and the refractive index respectively. A low-frequency dielectric constant of 34 was measured using a planar interdigital measurement structure. The resistivity of the film is ~3×1010 ohm·cm at room temperature and has an activation energy of thermal activated current of 0.66 eV.
ContributorsLi, You (Author) / Newman, Nathan (Thesis advisor) / Alford, Terry (Committee member) / Singh, Rakesh (Committee member) / Arizona State University (Publisher)
Created2013
151814-Thumbnail Image.png
Description
This research emphasizes the use of low energy and low temperature post processing to improve the performance and lifetime of thin films and thin film transistors, by applying the fundamentals of interaction of materials with conductive heating and electromagnetic radiation. Single frequency microwave anneal is used to rapidly recrystallize the

This research emphasizes the use of low energy and low temperature post processing to improve the performance and lifetime of thin films and thin film transistors, by applying the fundamentals of interaction of materials with conductive heating and electromagnetic radiation. Single frequency microwave anneal is used to rapidly recrystallize the damage induced during ion implantation in Si substrates. Volumetric heating of the sample in the presence of the microwave field facilitates quick absorption of radiation to promote recrystallization at the amorphous-crystalline interface, apart from electrical activation of the dopants due to relocation to the substitutional sites. Structural and electrical characterization confirm recrystallization of heavily implanted Si within 40 seconds anneal time with minimum dopant diffusion compared to rapid thermal annealed samples. The use of microwave anneal to improve performance of multilayer thin film devices, e.g. thin film transistors (TFTs) requires extensive study of interaction of individual layers with electromagnetic radiation. This issue has been addressed by developing detail understanding of thin films and interfaces in TFTs by studying reliability and failure mechanisms upon extensive stress test. Electrical and ambient stresses such as illumination, thermal, and mechanical stresses are inflicted on the mixed oxide based thin film transistors, which are explored due to high mobilities of the mixed oxide (indium zinc oxide, indium gallium zinc oxide) channel layer material. Semiconductor parameter analyzer is employed to extract transfer characteristics, useful to derive mobility, subthreshold, and threshold voltage parameters of the transistors. Low temperature post processing anneals compatible with polymer substrates are performed in several ambients (oxygen, forming gas and vacuum) at 150 °C as a preliminary step. The analysis of the results pre and post low temperature anneals using device physics fundamentals assists in categorizing defects leading to failure/degradation as: oxygen vacancies, thermally activated defects within the bandgap, channel-dielectric interface defects, and acceptor-like or donor-like trap states. Microwave anneal has been confirmed to enhance the quality of thin films, however future work entails extending the use of electromagnetic radiation in controlled ambient to facilitate quick post fabrication anneal to improve the functionality and lifetime of these low temperature fabricated TFTs.
ContributorsVemuri, Rajitha (Author) / Alford, Terry L. (Thesis advisor) / Theodore, N David (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2013
151647-Thumbnail Image.png
Description
The purpose of professional development is to enhance educator practices so that students may achieve at high levels. Too often, professional development tends to be too broad, general, or unrelated to problems of practice that teachers face in their own classrooms. This action research project builds upon the scholarly research

The purpose of professional development is to enhance educator practices so that students may achieve at high levels. Too often, professional development tends to be too broad, general, or unrelated to problems of practice that teachers face in their own classrooms. This action research project builds upon the scholarly research that recognizes the need for professional development to be sustained, connected to teachers' own contexts, focused on specific subject matter, collaborative, and reflective. The goal of this action research study was to facilitate a culture of continuous improvement in teaching and learning by utilizing a model of professional development that challenges teachers to question their practices, utilize research to support their instruction, design an inquiry project that supports a change in practice, and examine changes in student growth. Results suggest that although teachers recognize the complexities that surround professional development, they found that this professional development model focused on their needs as professionals, was sustained over time, and was supported by a variety of professional influences. As a result of the model implemented, teachers reported shifts in their instructional practices and student growth related to personal inquiry projects.
ContributorsHudak, Michele (Author) / Roe, Mary (Thesis advisor) / Weber, Catherine (Committee member) / Chalex, Nancy (Committee member) / Arizona State University (Publisher)
Created2013
151650-Thumbnail Image.png
Description
The purpose of this study was to help improve the evaluation system for school counselors and school psychologists, or non-instructional, certified staff (NICS). A mixed methodology approach was used to describe the existing evaluation system used to evaluate NICS; to develop a new system of evaluation based on recent research;

The purpose of this study was to help improve the evaluation system for school counselors and school psychologists, or non-instructional, certified staff (NICS). A mixed methodology approach was used to describe the existing evaluation system used to evaluate NICS; to develop a new system of evaluation based on recent research; and to determine how administrators, NICS, and experts in the field will respond to this new evaluation system that can assess both school counselors and school psychologists. This study employed change theory to bring about change within a single school district by assessing current practices in the evaluation of NICS, developing a new evaluation system for implementation in the district, and evaluating that system to refine it before full implementation. The study found that administrators did not hold a positive opinion of the current evaluation system's accuracy in assessing NICS, thereby promoting a reason for change. The results of this research suggest that the new system would enhance performance, improve support services, clarify goals and expectations, and provide appropriate and accurate feedback on performance. The findings indicate that the participants responded positively to the new evaluation system, and they hold a more positive opinion of the new system. The majority agreed the current system should be replaced with the new system. The recommendations of this study include developing action plans which follow from applying an action change model to the implementation of the new NICS evaluation system. In addition, in order for the system to evolve it must be piloted, continuing the action research process to revise the system as the implementation process is monitored and evaluated.
ContributorsHlavaty, Erica A (Author) / Lawton, Stephen (Thesis advisor) / Heck, Thomas (Thesis advisor) / Ventura, Mário (Committee member) / Arizona State University (Publisher)
Created2013
151654-Thumbnail Image.png
Description
Community college students are attracted to courses with alternative delivery formats such as hybrid courses because the more flexible delivery associated with such courses provides convenience for busy students. In a hybrid course, face-to-face, structured seat time is exchanged for online components. In such courses, students take more responsibility for

Community college students are attracted to courses with alternative delivery formats such as hybrid courses because the more flexible delivery associated with such courses provides convenience for busy students. In a hybrid course, face-to-face, structured seat time is exchanged for online components. In such courses, students take more responsibility for their learning because they assume additional responsibility for learning more of the course material on their own. Thus, self-regulated learning (SRL) behaviors have the potential to be useful for students to successfully navigate hybrid courses because the online components require exercise of more personal control over the autonomous learning situations inherent in hybrid courses. Self-regulated learning theory includes three components: metacognition, motivation, and behavioral actions. In the current study, this theoretical framework is used to examine how inducing self-regulated learning activities among students taking a hybrid course influence performance in a community college science course. The intervention for this action research study consisted of a suite of activities that engage students in self-regulated learning behaviors to foster student performance. The specific SRL activities included predicting grades, reflections on coursework and study efforts in course preparation logs, explanation of SRL procedures in response to a vignette, photo ethnography work on their personal use of SRL approaches, and a personalized study plan. A mixed method approach was employed to gather evidence for the study. Results indicate that community college students use a variety of self-regulated learning strategies to support their learning of course material. Further, engaging community college students in learning reflection activities appears to afford some students with opportunities to refine their SRL skills and influence their learning. The discussion focuses on integrating the quantitative and qualitative data and explanation of the findings using the SRL framework. Additionally, lessons learned, limitations, and implications for practice and research are discussed. Specifically, it is suggested that instructors can foster student learning in hybrid courses by teaching students to engage in SRL processes and behaviors rather than merely focusing on delivery of course content. Such SRL behaviors allow students to exercise greater control over the autonomous learning situations inherent in hybrid courses.
ContributorsManuelito, Shannon Joy (Author) / Buss, Ray R. (Thesis advisor) / Smith, Rachel (Committee member) / Barnett, Joshua (Committee member) / Arizona State University (Publisher)
Created2013
151664-Thumbnail Image.png
Description
ABSTRACT A review of studies selected from the Educational Resource Information Center (ERIC) covering the years 1985 through 2011 revealed three key evaluation components to analyze within a comprehensive teacher evaluation program: (a) designing, planning, and implementing instruction; (b) learning environments; and (c) parent and peer surveys. In this dissertation,

ABSTRACT A review of studies selected from the Educational Resource Information Center (ERIC) covering the years 1985 through 2011 revealed three key evaluation components to analyze within a comprehensive teacher evaluation program: (a) designing, planning, and implementing instruction; (b) learning environments; and (c) parent and peer surveys. In this dissertation, these three components are investigated in the context of two research questions: 1. What is the relationship, if any, between comprehensive teacher evaluation scores and student standardized test scores? 2. How do teachers and administrators experience the comprehensive evaluation process and how do they use their experiences to inform instruction? The methodology for the study included a mixed-method case study at a charter school located in a middle-class neighborhood within a large metropolitan area of the southwestern United States, which included a comparison of teachers' average evaluation scores in the areas of instruction and environment, peer survey scores, parent survey scores, and students' standardized test (SST) benchmark scores over a two-year period as the quantitative data for the study. I also completed in-depth interviews with classroom teachers, mentor teachers, the master teacher, and the school principal; I used these interviews for the qualitative portion of my study. All three teachers had similar evaluation scores; however, when comparing student scores among the teachers, differences were evident. While no direct correlations between student achievement data and teacher evaluation scores are possible, the qualitative data suggest that there were variations among the teachers and administrators in how they experienced or "bought into" the comprehensive teacher evaluation, but they all used evaluation information to inform their instruction. This dissertation contributes to current research by suggesting that comprehensive teacher evaluation has the potential to change teachers' and principals' perceptions of teacher evaluation as inefficient and unproductive to a system that can enhance instruction and ultimately improve student achievement.  
ContributorsBullock, Donna (Author) / Mccarty, Teresa (Thesis advisor) / Powers, Jeanne (Thesis advisor) / Stafford, Catherine (Committee member) / Arizona State University (Publisher)
Created2013
151670-Thumbnail Image.png
Description
Legislative changes and discussions about the United States falling further and further behind other nations in science, technology, engineering, and math (STEM) achievement are growing. As they grow, STEM instruction in elementary school has earned its place as a national area of interest in education. In the case of Ivory

Legislative changes and discussions about the United States falling further and further behind other nations in science, technology, engineering, and math (STEM) achievement are growing. As they grow, STEM instruction in elementary school has earned its place as a national area of interest in education. In the case of Ivory School District, teachers are being asked to radically change their daily practices by consistently implementing inquiry-based STEM experiences in their classrooms. As such, teachers are being asked to scale a divide between the district expectations and their knowledge and experience. Many fourth grade educators are teachers who have been trained as generalists and typically do not have specific background or experience in the philosophy, instructional strategies, or content associated with STEM. Using a prototype approach, this study aims to understand how such teachers conceptualize STEM instruction and the relationship between their experience and conceptions.
ContributorsKenney, Meghan (Author) / Fischman, Gustavo (Thesis advisor) / Powers, Jeanne (Committee member) / Rasch, Katherine D (Committee member) / Arizona State University (Publisher)
Created2013
151674-Thumbnail Image.png
Description
This study investigates the effectiveness of the use of Concept-Based Instruction (CBI) to facilitate the acquisition of Spanish mood distinctions by second semester second language learners of Spanish. The study focuses on the development of Spanish mood choice and the types of explanations (Rule-of-Thumb vs. Concept-based) used by five students

This study investigates the effectiveness of the use of Concept-Based Instruction (CBI) to facilitate the acquisition of Spanish mood distinctions by second semester second language learners of Spanish. The study focuses on the development of Spanish mood choice and the types of explanations (Rule-of-Thumb vs. Concept-based) used by five students before and after being exposed to Concept-Based Instruction regarding the choice of Spanish mood following various modalities .The students in this study were presented with a pedagogical treatment on Spanish mood choice that included general theoretical concepts based on Gal'perin's (1969, 1992) didactic models and acts of verbalization, which form part of a Concept-Based pedagogical approach. In order to ascertain the effectiveness of the use of concept-based tools to promote the ability to use Spanish mood appropriately over time, a pre and post-test was administered to the group in which students were asked to respond to prompts containing modalities that elicit the indicative and subjunctive moods, indicate their level of confidence in their response, and verbalize in writing a reason for their choice. The development of these abilities in learners exposed to CBI was assessed by comparing pre and post-test scores examining both forms and explanations for the indicative and subjunctive modality prompts given. Results showed that students continued to rely on Rule-of-Thumb explanations of mood choice but they did expand their use of conceptually-based reasoning. Although the quantitative and qualitative analyses of the results indicate that most students did improve their ability to make appropriate mood choices (forms and explanations) after the CBI treatment, the increased use of conceptually-based explanations for their mood choices led to both correct and incorrect responses.
ContributorsBeus, Eric (Author) / Lafford, Barbara (Thesis advisor) / Beas, Omar (Committee member) / Cerron-Palomino, Alvaro (Committee member) / Arizona State University (Publisher)
Created2013
151675-Thumbnail Image.png
Description
This dissertation is on the study of structural and optical properties of some III-V and II-VI compound semiconductors. The first part of this dissertation is a study of the deformation mechanisms associated with nanoindentation and nanoscratching of InP, GaN, and ZnO crystals. The second part is an investigation of some

This dissertation is on the study of structural and optical properties of some III-V and II-VI compound semiconductors. The first part of this dissertation is a study of the deformation mechanisms associated with nanoindentation and nanoscratching of InP, GaN, and ZnO crystals. The second part is an investigation of some fundamental issues regarding compositional fluctuations and microstructure in GaInNAs and InAlN alloys. In the first part, the microstructure of (001) InP scratched in an atomic force microscope with a small diamond tip has been studied as a function of applied normal force and crystalline direction in order to understand at the nanometer scale the deformation mechanisms in the zinc-blende structure. TEM images show deeper dislocation propagation for scratches along <110> compared to <100>. High strain fields were observed in <100> scratches, indicating hardening due to locking of dislocations gliding on different slip planes. Reverse plastic flow have been observed in <110> scratches in the form of pop-up events that result from recovery of stored elastic strain. In a separate study, nanoindentation-induced plastic deformation has been studied in c-, a-, and m-plane ZnO single crystals and c-plane GaN respectively, to study the deformation mechanism in wurtzite hexagonal structures. TEM results reveal that the prime deformation mechanism is slip on basal planes and in some cases, on pyramidal planes, and strain built up along particular directions. No evidence of phase transformation or cracking was observed in both materials. CL imaging reveals quenching of near band-edge emission by dislocations. In the second part, compositional inhomogeneity in quaternary GaInNAs and ternary InAlN alloys has been studied using TEM. It is shown that exposure to antimony during growth of GaInNAs results in uniform chemical composition in the epilayer, as antimony suppresses the surface mobility of adatoms that otherwise leads to two-dimensional growth and elemental segregation. In a separate study, compositional instability is observed in lattice-matched InAlN films grown on GaN, for growth beyond a certain thickness. Beyond 200 nm of thickness, two sub-layers with different indium content are observed, the top one with lower indium content.
ContributorsHuang, Jingyi (Author) / Ponce, Fernando A. (Thesis advisor) / Carpenter, Ray W (Committee member) / Smith, David J. (Committee member) / Yu, Hongbin (Committee member) / Treacy, Michael Mj (Committee member) / Arizona State University (Publisher)
Created2013