Matching Items (54)
Filtering by

Clear all filters

137869-Thumbnail Image.png
Description
Meteorology is an uncommon term rarely resonating through elementary classrooms. However, it is a concept found in both fourth and sixth grade Arizona science standards. As issues involving the environment are becoming more pertinent, it is important to study and understand atmospheric processes along with fulfilling the standards for each

Meteorology is an uncommon term rarely resonating through elementary classrooms. However, it is a concept found in both fourth and sixth grade Arizona science standards. As issues involving the environment are becoming more pertinent, it is important to study and understand atmospheric processes along with fulfilling the standards for each grade level. This thesis project teaches the practical skills of weather map reading and weather forecasting through the creation and execution of an after school lesson with the aide of seven teen assistants.
ContributorsChoulet, Shayna (Author) / Walters, Debra (Thesis director) / Oliver, Jill (Committee member) / Balling, Robert (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
137870-Thumbnail Image.png
Description
Plants are essential to human life. They release oxygen into the atmosphere for us to breathe. They also provide shelter, medicine, clothing, tools, and food. For many people, the food that is on their tables and in their supermarkets isn't given much thought. Where did it come from? What part

Plants are essential to human life. They release oxygen into the atmosphere for us to breathe. They also provide shelter, medicine, clothing, tools, and food. For many people, the food that is on their tables and in their supermarkets isn't given much thought. Where did it come from? What part of the plant is it? How does it relate to others in the plant kingdom? How do other cultures use this plant? The most many of us know about them is that they are at the supermarket when we need them for dinner (Nabhan, 2009) (Vileisis, 2008).
ContributorsBarron, Kara (Author) / Landrum, Leslie (Thesis director) / Swanson, Tod (Committee member) / Pigg, Kathleen (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
137871-Thumbnail Image.png
DescriptionBased on previous research and findings it is proven that a non-profit class to create awareness will be beneficial in the prevention of eating disorders. This analysis will provide significant research to defend the proposed class.
ContributorsAllen, Brittany (Author) / Chung, Deborah (Author) / Fey, Richard (Thesis director) / Peck, Sidnee (Committee member) / Mazurkiewicz, Milena (Committee member) / Barrett, The Honors College (Contributor) / W. P. Carey School of Business (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
136549-Thumbnail Image.png
Description
A primary goal in computer science is to develop autonomous systems. Usually, we provide computers with tasks and rules for completing those tasks, but what if we could extend this type of system to physical technology as well? In the field of programmable matter, researchers are tasked with developing synthetic

A primary goal in computer science is to develop autonomous systems. Usually, we provide computers with tasks and rules for completing those tasks, but what if we could extend this type of system to physical technology as well? In the field of programmable matter, researchers are tasked with developing synthetic materials that can change their physical properties \u2014 such as color, density, and even shape \u2014 based on predefined rules or continuous, autonomous collection of input. In this research, we are most interested in particles that can perform computations, bond with other particles, and move. In this paper, we provide a theoretical particle model that can be used to simulate the performance of such physical particle systems, as well as an algorithm to perform expansion, wherein these particles can be used to enclose spaces or even objects.
ContributorsLaff, Miles (Author) / Richa, Andrea (Thesis director) / Bazzi, Rida (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
136516-Thumbnail Image.png
Description
Bots tamper with social media networks by artificially inflating the popularity of certain topics. In this paper, we define what a bot is, we detail different motivations for bots, we describe previous work in bot detection and observation, and then we perform bot detection of our own. For our bot

Bots tamper with social media networks by artificially inflating the popularity of certain topics. In this paper, we define what a bot is, we detail different motivations for bots, we describe previous work in bot detection and observation, and then we perform bot detection of our own. For our bot detection, we are interested in bots on Twitter that tweet Arabic extremist-like phrases. A testing dataset is collected using the honeypot method, and five different heuristics are measured for their effectiveness in detecting bots. The model underperformed, but we have laid the ground-work for a vastly untapped focus on bot detection: extremist ideal diffusion through bots.
ContributorsKarlsrud, Mark C. (Author) / Liu, Huan (Thesis director) / Morstatter, Fred (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
135739-Thumbnail Image.png
Description
Many programmable matter systems have been proposed and realized recently, each often tailored toward a particular task or physical setting. In our work on self-organizing particle systems, we abstract away from specific settings and instead describe programmable matter as a collection of simple computational elements (to be referred to as

Many programmable matter systems have been proposed and realized recently, each often tailored toward a particular task or physical setting. In our work on self-organizing particle systems, we abstract away from specific settings and instead describe programmable matter as a collection of simple computational elements (to be referred to as particles) with limited computational power that each perform fully distributed, local, asynchronous algorithms to solve system-wide problems of movement, configuration, and coordination. In this thesis, we focus on the compression problem, in which the particle system gathers as tightly together as possible, as in a sphere or its equivalent in the presence of some underlying geometry. While there are many ways to formalize what it means for a particle system to be compressed, we address three different notions of compression: (1) local compression, in which each individual particle utilizes local rules to create an overall convex structure containing no holes, (2) hole elimination, in which the particle system seeks to detect and eliminate any holes it contains, and (3) alpha-compression, in which the particle system seeks to shrink its perimeter to be within a constant factor of the minimum possible value. We analyze the behavior of each of these algorithms, examining correctness and convergence where appropriate. In the case of the Markov Chain Algorithm for Compression, we provide improvements to the original bounds for the bias parameter lambda which influences the system to either compress or expand. Lastly, we briefly discuss contributions to the problem of leader election--in which a particle system elects a single leader--since it acts as an important prerequisite for compression algorithms that use a predetermined seed particle.
ContributorsDaymude, Joshua Jungwoo (Author) / Richa, Andrea (Thesis director) / Kierstead, Henry (Committee member) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136853-Thumbnail Image.png
Description
I will be investigating the merit of participatory culture in online literary roleplaying. While looking at an affinity space within participatory culture, I will be examining the importance of narrative within a roleplay board, the value placed in writing ability and habitual participation, and the gaining of social capital within

I will be investigating the merit of participatory culture in online literary roleplaying. While looking at an affinity space within participatory culture, I will be examining the importance of narrative within a roleplay board, the value placed in writing ability and habitual participation, and the gaining of social capital within the affinity space of players through the scope of two forms of participatory culture: expressions and collaborative problem solving. I will also look at the limitations of literary roleplaying before talking about the potential of roleplaying to be used as a tool for students in the classroom. Throughout my investigation, I pool information from online roleplay forum boards as well as Tumblr blogs. Drawing from these examples, I hope to not only show the value and merit of online roleplaying as a form of literature, but also demonstrate its potential as a curriculum guide for educators.
ContributorsLacson, Therese (Author) / Lussier, Mark (Thesis director) / Daer, Alice (Committee member) / Barrett, The Honors College (Contributor) / Department of English (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor)
Created2014-05
136691-Thumbnail Image.png
Description
Covering subsequences with sets of permutations arises in many applications, including event-sequence testing. Given a set of subsequences to cover, one is often interested in knowing the fewest number of permutations required to cover each subsequence, and in finding an explicit construction of such a set of permutations that has

Covering subsequences with sets of permutations arises in many applications, including event-sequence testing. Given a set of subsequences to cover, one is often interested in knowing the fewest number of permutations required to cover each subsequence, and in finding an explicit construction of such a set of permutations that has size close to or equal to the minimum possible. The construction of such permutation coverings has proven to be computationally difficult. While many examples for permutations of small length have been found, and strong asymptotic behavior is known, there are few explicit constructions for permutations of intermediate lengths. Most of these are generated from scratch using greedy algorithms. We explore a different approach here. Starting with a set of permutations with the desired coverage properties, we compute local changes to individual permutations that retain the total coverage of the set. By choosing these local changes so as to make one permutation less "essential" in maintaining the coverage of the set, our method attempts to make a permutation completely non-essential, so it can be removed without sacrificing total coverage. We develop a post-optimization method to do this and present results on sequence covering arrays and other types of permutation covering problems demonstrating that it is surprisingly effective.
ContributorsMurray, Patrick Charles (Author) / Colbourn, Charles (Thesis director) / Czygrinow, Andrzej (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2014-12
136695-Thumbnail Image.png
Description
Nations have a vital interest in creating a citizenry with certain attributes and beliefs and, since education contributes to the formation of children's national identity, government authorities can influence educational curricula to construct their ideal citizen. In this thesis, I study the educational systems of Pakistan and Arizona and explore

Nations have a vital interest in creating a citizenry with certain attributes and beliefs and, since education contributes to the formation of children's national identity, government authorities can influence educational curricula to construct their ideal citizen. In this thesis, I study the educational systems of Pakistan and Arizona and explore the historical and conceptual origins of these entities' manipulation of curricula to construct a particular kind of citizen. I argue that an examination of the ethnic studies debate in Tucson, Arizona, in conjunction with Pakistan's history education policy, will illustrate that the educational systems in both these sites are developed to advance the interests of governing authorities. Resource material demonstrates that both educational systems endorse specific accounts of history, omitting information, perspectives, and beliefs. Eliminating or reimagining certain narratives of history alienates some students from identifying as citizens of the state, particularly when contributions of their ethnic, cultural, or religious groups are not included in the country's textbooks.
ContributorsFritcke, Emily Anne (Author) / Saikia, Yasmin (Thesis director) / Haines, Chad (Committee member) / Barrett, The Honors College (Contributor) / Department of English (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor)
Created2014-12
137023-Thumbnail Image.png
Description
Previous research discusses students' difficulties in grasping an operational understanding of covariational reasoning. In this study, I interviewed four undergraduate students in calculus and pre-calculus classes to determine their ways of thinking when working on an animated covariation problem. With previous studies in mind and with the use of technology,

Previous research discusses students' difficulties in grasping an operational understanding of covariational reasoning. In this study, I interviewed four undergraduate students in calculus and pre-calculus classes to determine their ways of thinking when working on an animated covariation problem. With previous studies in mind and with the use of technology, I devised an interview method, which I structured using multiple phases of pre-planned support. With these interviews, I gathered information about two main aspects about students' thinking: how students think when attempting to reason covariationally and which of the identified ways of thinking are most propitious for the development of an understanding of covariational reasoning. I will discuss how, based on interview data, one of the five identified ways of thinking about covariational reasoning is highly propitious, while the other four are somewhat less propitious.
ContributorsWhitmire, Benjamin James (Author) / Thompson, Patrick (Thesis director) / Musgrave, Stacy (Committee member) / Moore, Kevin C. (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / T. Denny Sanford School of Social and Family Dynamics (Contributor)
Created2014-05