Matching Items (22)
Filtering by

Clear all filters

135387-Thumbnail Image.png
Description
For this thesis, the authors would like to create a hypothetical Private Equity Real Estate Investment firm that focuses on creating value for partners by taking an opportunistic approach to acquiring under-performing urban multi-family properties with large upside potential for investing. The project will focus on both the market analysis

For this thesis, the authors would like to create a hypothetical Private Equity Real Estate Investment firm that focuses on creating value for partners by taking an opportunistic approach to acquiring under-performing urban multi-family properties with large upside potential for investing. The project will focus on both the market analysis and financial modeling associated with investment strategy and transactions. There is a substantial amount of complexity within commercial real estate and this thesis seeks to offer an accurate and comprehensive documentary of the process, while simplifying it for everyday readers. Additionally, there are a significant amount of risk factors associated with investment decisions, so the best practices from the industry documented in this manuscript are valuable tools for successful investing in the future. To gain the most profound and reliable industry knowledge, the authors leveraged the experience of dozens of industry professionals through research and personal interviews. Through careful analysis, the authors were able to ascertain the current economic position in the real estate cycle and to create a plan for future investing. Additionally, they were able to identify and evaluate a specific asset for purchase. As a result, the authors found that multifamily properties are a sound investment for the next two years and that the company should slowly start to shift directions to office and retail in 2018.
ContributorsBacon, David (Co-author) / Soto, Justin (Co-author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor) / Department of Marketing (Contributor) / W. P. Carey School of Business (Contributor) / School of Accountancy (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135450-Thumbnail Image.png
Description
As the IoT (Internet of Things) market continues to grow, Company X needs to find a way to penetrate the market and establish larger market share. The problem with Company X's current strategy and cost structure lies in the fact that the fastest growing portion of the IoT market is

As the IoT (Internet of Things) market continues to grow, Company X needs to find a way to penetrate the market and establish larger market share. The problem with Company X's current strategy and cost structure lies in the fact that the fastest growing portion of the IoT market is microcontrollers (MCUs). As Company X currently holds its focus in manufacturing microprocessors (MPUs), the current manufacturing strategy is not optimal for entering competitively into the MCU space. Within the MCU space, the companies that are competing the best do not utilize such high level manufacturing processes because these low cost products do not demand them. Given that the MCU market is largely untested by Company X and its products would need to be manufactured at increasingly lower costs, it runs the risk of over producing and holding obsolete inventory that is either scrapped or sold at or below cost. In order to eliminate that risk, we will explore alternative manufacturing strategies for Company X's MCU products specifically, which will allow for a more optimal cost structure and ultimately a more profitable Internet of Things Group (IoTG). The IoT MCU ecosystem does not require the high powered technology Company X is currently manufacturing and therefore, Company X loses large margins due to its unnecessary leading technology. Since cash is king, pursuing a fully external model for MCU design and manufacturing processes will generate the highest NPV for Company X. It also will increase Company X's market share, which is extremely important given that every tech company in the world is trying to get its hands into the IoT market. It is possible that in ten to thirty years down the road, Company X can manufacture enough units to keep its products in-house, but this is not feasible in the foreseeable future. For now, Company X should focus on the cost market of MCUs by driving its prices down while maintaining low costs due to the variables of COGS and R&D given in our fully external strategy.
ContributorsKadi, Bengimen (Co-author) / Peterson, Tyler (Co-author) / Langmack, Haley (Co-author) / Quintana, Vince (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / Department of Supply Chain Management (Contributor) / Department of Finance (Contributor) / Department of Information Systems (Contributor) / Department of Marketing (Contributor) / School of Accountancy (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136297-Thumbnail Image.png
Description
Dr. Dean Kashiwagi created a new thinking paradigm, Information Measurement Theory (IMT), which utilizes the understanding of natural laws to help individuals minimize decision-making and risk, which leads to reduced stress. In this new paradigm, any given situation can only have one unique outcome. The more information an individual has

Dr. Dean Kashiwagi created a new thinking paradigm, Information Measurement Theory (IMT), which utilizes the understanding of natural laws to help individuals minimize decision-making and risk, which leads to reduced stress. In this new paradigm, any given situation can only have one unique outcome. The more information an individual has for the given situation, the better they can predict the outcome. Using IMT can help correctly "predict the future" of any situation if given enough of the correct information. A prime example of using IMT would be: to correctly predict what a young woman will be like when she's older, simply look at the young woman's mother. In essence, if you can't fall in love with the mother, don't marry the young woman. The researchers are utilizing the concept of IMT and extrapolating it to the financial investing world. They researched different financial investing strategies and were able to come to the conclusion that a strategy utilizing IMT would yield the highest results for investors while minimizing stress. Investors using deductive logic to invest received, on average, 1300% more returns than investors who did not over a 25-year period. Where other investors made many decisions and were constantly stressed with the tribulations of the market, the investors utilizing IMT made one decision and made much more than other investors. The research confirms the stock market will continue to increase over time by looking at the history of the stock market from a birds-eye view. Throughout the existence of the stock market, there have been highs and lows, but at the end of the day, the market continues to break through new ceilings. Investing in the stock market can be a dark and scary place for the blind investor. Using the concept of IMT can eliminate that blindfold to reduce stress on investors while earning the highest financial return potential. Using the basis of IMT, the researchers predict the market will continue to increase in the future; in conclusion, the best investment strategy is to invest in blue chip stocks that have a history of past success, in order to capture secure growth with minimal risk and stress.
ContributorsBerns, Ryan (Co-author) / Ybanez, Julian (Co-author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Barrett, The Honors College (Contributor) / Department of Finance (Contributor) / Department of Marketing (Contributor) / W. P. Carey School of Business (Contributor)
Created2015-05
137007-Thumbnail Image.png
Description
This thesis aims to enhance K-6 Education in the United States by developing recommendations for how technology is utilized in the classroom as a means to teach collaborative skills. By applying the technological capabilities we have today to the Common Core State Standards that are gradually being adopted and implemented,

This thesis aims to enhance K-6 Education in the United States by developing recommendations for how technology is utilized in the classroom as a means to teach collaborative skills. By applying the technological capabilities we have today to the Common Core State Standards that are gradually being adopted and implemented, officials can improve the quality of education across the country and create classroom environments conducive to knowledge acquisition and skill development.
The research begins with the history of standards, starting with traditional outcome-based standards. It then delves into the Partnership for 21st Century Skills (P21), which highlights the type of skills 21st century students are expected to develop and master by the time they enter college and careers. Next, it explores the hot topic of Education to this date: Common Core State Standards. In the midst of educational reform, these standards seek to add consistency across the nation in regards to what students should know at each grade level and also encourage teaching of the 21st century skills. This section briefly details the content of Common Core English Language Arts and Mathematics standards.
After summarizing P21 and Common Core, this report shifts into its focused 21st century skill: collaboration. As one of the 4 C’s that P21 and Common Core emphasize in their standards, it is imperative to research critical elements of collaboration as they relate to groups and teams of all ages. Even more specifically, collaboration is a practice that is becoming more and more standard in business across all industries, so it is a skill that is highly in demand for students to acquire. In regards to collaboration, Executive Vice President of Verizon, Bob Mudge, states, “companies are able to innovate much more quickly and even create solutions to problems that may not be prevalent issues yet” (Mudge 1). The standards expect that students will be prepared to collaborate in college and careers, so key elements of collaboration in those settings—in-person or virtual—need apply or be simplified to K-6 collaborative environments. This section also analyzes a case study experiment on young children about how technology functionality and design enables, encourages, or enforces collaboration.
Next, this thesis reviews three case studies that represent evolution in our understanding of technology’s role as a support system in teaching and learning collaboration. The first case study shows how simple handheld devices assisted in correcting weaknesses in a variety of collaborative and organizational skills. The second study utilizes interactive tabletop technology to realize the idea of tracking collaborative ability in real time through synchronized audio and touch recording. Finally, researchers assess the effectiveness of one student to one device (1:1) initiatives by gathering student-reported data before and after the program’s implementation, which largely speak to the direction of many schools’ technology strategies.
To supplement all of the secondary research above, the researcher of this thesis conducted interviews with nine K-6 teachers to gather their insights on collaboration and how they facilitate it. They explain how they use technology in their classroom to enhance the learning environment. Additionally, they give opinions on what could be done to make collaboration more easily taught and facilitated, as well as what would better develop their students’ collaborative skills.
The compilation of this information then leads to implications of what needs to be present, from a technology standpoint, to more effectively teach collaborative skills to our schoolchildren. This includes a brief industry analysis of a program that already exists, as well as recommendations for new technology that considers the research conducted throughout the paper. Another implication addressed centers on the instruction and facilitation of technology and the digital divide that can result from varying competency among teachers, which brings to light the need for proper technology development programs for educators.
ContributorsPetrovich, Nicholas Hugh (Author) / Ostrom, Amy (Thesis director) / Ostrom, Lonnie (Committee member) / Barrett, The Honors College (Contributor) / Department of Marketing (Contributor) / Department of Management (Contributor) / School of Film, Dance and Theatre (Contributor)
Created2014-05
137019-Thumbnail Image.png
Description
This paper outlines the process of designing, creating, and implementing a supply chain management outreach program to benefit high schools students in areas surrounding Intel campuses. The program—which spreads awareness of supply chain management and STEM (Science, Technology, Engineering, Math) and how they work together in businesses today—was created and

This paper outlines the process of designing, creating, and implementing a supply chain management outreach program to benefit high schools students in areas surrounding Intel campuses. The program—which spreads awareness of supply chain management and STEM (Science, Technology, Engineering, Math) and how they work together in businesses today—was created and tested by me, with the help of the following committee members: James Kellso – Director, Cheryl Dalsin – 2nd Reader, and Jack Berg – 3rd Reader. The end goal is for this program to become sustainable, and for it to spread as far and wide as possible. Supply chain management and STEM are becoming crucial to understand in businesses today and will only become more imperative in future years.

Keywords: supply chain management (SCM), Science Technology Engineering Math (STEM)
ContributorsHughes, Kelsey Ellen (Author) / Kellso, James (Thesis director) / Dalsin, Cheryl (Committee member) / Berg, Jack (Committee member) / Barrett, The Honors College (Contributor) / Department of Marketing (Contributor) / Department of Supply Chain Management (Contributor) / W. P. Carey School of Business (Contributor)
Created2014-05
Description
The landscape of professional sporting venues within the United States is changing. From 1990-2018, within the four main American professional sports leagues, 20 new NHL arenas, 24 new NBA arenas, 22 new NFL stadiums, and 26 new MLB stadiums were built. As the industry morphs, a handful of new initiatives

The landscape of professional sporting venues within the United States is changing. From 1990-2018, within the four main American professional sports leagues, 20 new NHL arenas, 24 new NBA arenas, 22 new NFL stadiums, and 26 new MLB stadiums were built. As the industry morphs, a handful of new initiatives are being worked into the construct of these venues including increased commercial areas for shopping and restaurants and sharing of the venues between two organizations in an attempt to increase the overall utilization of the spaces. Additionally, in Detroit, San Francisco and Atlanta, where new stadiums and arenas were just recently introduced, the municipalities are using the venues to catalyze further growth and development within the city. However, these trends, while innovative, are tethered to high prices.
This thesis seeks to analyze the changes in how current stadiums are being funded, the public’s reaction to and perception of those financing plans and what the future might hold. Research showed that tax dollars are increasingly unpopular and teams are moving away from using public money to fund sports venues. Gathered for this report, survey data of 815 Arizona State University students supported anecdotal evidence that people within a community are relatively unhappy with the idea of their money being used to partially subsidize wealthy sports organizations’ infrastructure. Altogether, recent evidence suggests that multi-use facilities funded in majority by private wealth are more popular and generate greater economic impact for the municipality than earlier in history, when heavily subsidized venues allowed teams to take advantage of local government and created fan mistrust.
ContributorsKleen, Brendon (Co-author) / Cwiakala, Alec (Co-author) / Eaton, John (Thesis director) / McIntosh, Daniel (Committee member) / Walter Cronkite School of Journalism & Mass Comm (Contributor, Contributor) / Department of Marketing (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
137734-Thumbnail Image.png
Description
Semiconductor Manufacturer (Semi) wants to improve the valuation of the extended warranties they purchase for their metrology tools and determine whether or not extended warranties are worth the financial investment. Historically, suppliers have commonly overvalued warranties. For example, there is a 50%-60% profit margin on warranties in the consumer electronics

Semiconductor Manufacturer (Semi) wants to improve the valuation of the extended warranties they purchase for their metrology tools and determine whether or not extended warranties are worth the financial investment. Historically, suppliers have commonly overvalued warranties. For example, there is a 50%-60% profit margin on warranties in the consumer electronics industry. The costs incurred from purchasing extended warranties contribute to millions of dollars each year in tool ownership for Semi. By creating an extended warranty valuation model, our goal is to reduce the total cost of metrology tool ownership. A different perspective on the valuation of extended warranties will lead to an increased bottom line for Semi. Our valuation model will assist in determining warranty purchase pricing and appropriate service levels of maintenance personnel associated with the extended warranties. The model's objective is to compare the statistical expected total cost of buying tool parts on an "as needed" basis with the quoted price of an extended warranty. It will assess the strict financial value of either buying or not buying the extended warranty. Using actual tool part consumption data, the model can quickly evaluate the value of a supplier's warranty offer. In addition, the results from the model can be used as a negotiation tool with the suppliers. However the model will have its limitations. For example, the model will not be able to evaluate whether a metrology supplier relies on extended warranty revenues to fund research and development or whether a supplier has the financial health to remain in business with the loss of extended warranty related revenues. A shift in extended warranty purchasing by Semi could have a profound impact on the number of competitive suppliers in the future, and Semi's managers should take this into account when altering their extended warranty purchasing strategy. Our model can be utilized for three different functions: negotiating with suppliers, simplifying the decision to buy or not buy an extended warranty and influencing managers' purchasing strategies. Changing the service level costs of labor can impact Semi's decision to buy or not the extended warranty due to its effect on the probability of the warranty being a good or bad deal. In addition, the model output can significantly influence a manager's purchasing strategy within the organization by breaking down the cost savings associated with the metrology tools' part failures. In order to improve the accuracy and effectiveness of the financial model, we recommend that Semi collect and assemble the model input data in a different manner. Although it is possible Semi does collect more detailed data, the input data we received needed to be more comprehensive; it should include a list of tool parts with their respective failure dates, along with which supplier is responsible for which tool. Furthermore, Semi should develop a supplier scorecard to account for financial health, which can be factored into the model. This will result in a more precise evaluation on whether or not an extended warranty is worth the financial investment.
ContributorsGordon, Audrey Elizabeth (Co-author) / Barkley, Erin (Co-author) / Brady, Max Jordan (Co-author) / Lin, Jessica (Co-author) / Shieffield, Ethan (Co-author) / Hertzel, Michael (Thesis director) / Simonson, Mark (Committee member) / Schembri, Christopher (Committee member) / Barrett, The Honors College (Contributor) / Department of Finance (Contributor) / Department of Marketing (Contributor)
Created2013-05
135688-Thumbnail Image.png
Description
Education is a very sensitive topic when it comes to implementing the right policies. From professionals well-versed in the topic, to the very students who are being taught, feedback for reform is constantly being addressed. Nonetheless, there remains a large gap between the performance of some of the most advanced

Education is a very sensitive topic when it comes to implementing the right policies. From professionals well-versed in the topic, to the very students who are being taught, feedback for reform is constantly being addressed. Nonetheless, there remains a large gap between the performance of some of the most advanced countries in the world and the United States of America. As it stands today, USA is arguably the most technologically advanced country and the outright leader of the free market. For over a century this nation has been exceeding expectations in nearly every industry known to man and aiding the rest of the world in their endeavors for a higher standard of living. Yet, there seems to be something critically wrong with the way a large majority of the younger generation are growing up. How can a country so respected in the world fall so far behind in what is considered the basics of human education: math and science? The Trends in International Mathematics and Science Study (TIMSS) is a series of assessments taken by countries all around the world to determine the strength of their youth's knowledge. Since its inception in 1995, TIMSS has been conducted every four years with an increasing number of participating countries and students each time. In 1999 U.S. eighth-graders placed #19 in the world for mathematics and #18 for science (Appendix Fig. 1). In the years following, and further detailed in the thesis, the U.S. managed to improve the overall performance by a small margin but still remained a leg behind countries like Singapore, Hong Kong, Japan, Russia, and more. Clearly these countries were doing something right as they consistently managed to rank in the top tier. Over the course of this paper we will observe and analyze why and how Singapore has topped the TIMSS list for both math and science nearly every time it has been administered over the last two decades. What is it that they are teaching their youth that enables them to perform exceptionally above the norm? Why is it that we cannot use their techniques as a guideline to increase the capabilities of our future generations? We look to uncover the teaching methods of what is known as Singapore Math and how it has helped students all over the world. By researching current U.S. schools that have already implemented the system and learning about their success stories, we hope to not only educate but also persuade the local school districts on why integrating Singapore Math into their curriculum will lead to the betterment of the lives of thousands of children and the educational threshold of this great nation.
ContributorsKichloo, Parth (Co-author) / Leverenz, Michael (Co-author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Rivera, Alfredo (Committee member) / Department of Management (Contributor) / Department of Marketing (Contributor) / Department of Finance (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description

The academic environment has historically been somewhat slow to implement and adopt new technologies. However, developments in video games have created an opportunity for students to learn new skills and topics through nontraditional mediums of education. The disruption caused by the COVID-19 pandemic further highlighted the need for flexible learning

The academic environment has historically been somewhat slow to implement and adopt new technologies. However, developments in video games have created an opportunity for students to learn new skills and topics through nontraditional mediums of education. The disruption caused by the COVID-19 pandemic further highlighted the need for flexible learning opportunities. Joystick Education is our approach to addressing this need. Through online, game-based tutoring and a database of video games with high educational value, Joystick Education creates a learning environment that is effective, fun, and engaging for students. We analyzed popular, mainstream video games for educational content and selected nine games that teach concepts like history, biology, or physics while playing the game. Through promotion on social media, we generated buzz around our website which led to 103 unique visitors over our first month online and two customers requesting to book our tutoring service. We are confident that given more time to grow, Joystick Education can generate profit and become a successful business.

ContributorsVanlue, Aleczander Bryce (Co-author) / Bartels, Parker (Co-author) / Barrong, Tanner (Co-author) / Byrne, Jared (Thesis director) / Pierce, John (Committee member) / Department of Marketing (Contributor) / Department of Management and Entrepreneurship (Contributor, Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
This thesis aims to properly prepare athletes for the significant life changes that will impact them as they transition from college or amateur athletics to professional sports careers. This thesis also identifies the benefits that reap from early education on expectations of learning what to expect at an earlier point

This thesis aims to properly prepare athletes for the significant life changes that will impact them as they transition from college or amateur athletics to professional sports careers. This thesis also identifies the benefits that reap from early education on expectations of learning what to expect at an earlier point in their amateur career. Certain areas are struck as having increasing importance in the transition: financial preparation, mental health and mental strengthening, public relations practice, nutritional needs, and other lifestyle choices that can help athletes reach their potential. Improving education in these areas, preparing athletes for these changes, and showing examples of what to expect as they transition into professional sports can benefit the athletes, the universities and colleges in which they are educated, the franchises in which they are drafted, and the communities where they reside. This information can be delivered through a handbook while having in-person training that can build upon each session to dive deeper into each given topic while building relationships with the athletes.
ContributorsMurphy, Flynn (Author) / Spies, Lindsey (Co-author) / McIntosh, Daniel (Thesis director) / Eaton, John (Committee member) / Barrett, The Honors College (Contributor) / Department of Marketing (Contributor)
Created2023-05