Matching Items (4)
Filtering by

Clear all filters

134533-Thumbnail Image.png
Description
Learning to program is no easy task, and many students experience their first programming during their university education. Unfortunately, programming classes have a large number of students enrolled, so it is nearly impossible for professors to associate with the students at an individual level and provide the personal attention each

Learning to program is no easy task, and many students experience their first programming during their university education. Unfortunately, programming classes have a large number of students enrolled, so it is nearly impossible for professors to associate with the students at an individual level and provide the personal attention each student needs. This project aims to provide professors with a tool to quickly respond to the current understanding of the students. This web-based application gives professors the control to quickly ask Java programming questions, and the ability to see the aggregate data on how many of the students have successfully completed the assigned questions. With this system, the students are provided with extra programming practice in a controlled environment, and if there is an error in their program, the system will provide feedback describing what the error means and what steps the student can take to fix it.
ContributorsVillela, Daniel Linus (Author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Hsiao, Sharon (Committee member) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
154641-Thumbnail Image.png
Description
Proliferation of social media websites and discussion forums in the last decade has resulted in social media mining emerging as an effective mechanism to extract consumer patterns. Most research on social media and pharmacovigilance have concentrated on

Adverse Drug Reaction (ADR) identification. Such methods employ a step of drug search followed

Proliferation of social media websites and discussion forums in the last decade has resulted in social media mining emerging as an effective mechanism to extract consumer patterns. Most research on social media and pharmacovigilance have concentrated on

Adverse Drug Reaction (ADR) identification. Such methods employ a step of drug search followed by classification of the associated text as consisting an ADR or not. Although this method works efficiently for ADR classifications, if ADR evidence is present in users posts over time, drug mentions fail to capture such ADRs. It also fails to record additional user information which may provide an opportunity to perform an in-depth analysis for lifestyle habits and possible reasons for any medical problems.

Pre-market clinical trials for drugs generally do not include pregnant women, and so their effects on pregnancy outcomes are not discovered early. This thesis presents a thorough, alternative strategy for assessing the safety profiles of drugs during pregnancy by utilizing user timelines from social media. I explore the use of a variety of state-of-the-art social media mining techniques, including rule-based and machine learning techniques, to identify pregnant women, monitor their drug usage patterns, categorize their birth outcomes, and attempt to discover associations between drugs and bad birth outcomes.

The technique used models user timelines as longitudinal patient networks, which provide us with a variety of key information about pregnancy, drug usage, and post-

birth reactions. I evaluate the distinct parts of the pipeline separately, validating the usefulness of each step. The approach to use user timelines in this fashion has produced very encouraging results, and can be employed for a range of other important tasks where users/patients are required to be followed over time to derive population-based measures.
ContributorsChandrashekar, Pramod Bharadwaj (Author) / Davulcu, Hasan (Thesis advisor) / Gonzalez, Graciela (Thesis advisor) / Hsiao, Sharon (Committee member) / Arizona State University (Publisher)
Created2016
156205-Thumbnail Image.png
Description
The subliminal impact of framing of social, political and environmental issues such as climate change has been studied for decades in political science and communications research. Media framing offers an “interpretative package" for average citizens on how to make sense of climate change and its consequences to their livelihoods, how

The subliminal impact of framing of social, political and environmental issues such as climate change has been studied for decades in political science and communications research. Media framing offers an “interpretative package" for average citizens on how to make sense of climate change and its consequences to their livelihoods, how to deal with its negative impacts, and which mitigation or adaptation policies to support. A line of related work has used bag of words and word-level features to detect frames automatically in text. Such works face limitations since standard keyword based features may not generalize well to accommodate surface variations in text when different keywords are used for similar concepts.

This thesis develops a unique type of textual features that generalize triplets extracted from text, by clustering them into high-level concepts. These concepts are utilized as features to detect frames in text. Compared to uni-gram and bi-gram based models, classification and clustering using generalized concepts yield better discriminating features and a higher classification accuracy with a 12% boost (i.e. from 74% to 83% F-measure) and 0.91 clustering purity for Frame/Non-Frame detection.

The automatic discovery of complex causal chains among interlinked events and their participating actors has not yet been thoroughly studied. Previous studies related to extracting causal relationships from text were based on laborious and incomplete hand-developed lists of explicit causal verbs, such as “causes" and “results in." Such approaches result in limited recall because standard causal verbs may not generalize well to accommodate surface variations in texts when different keywords and phrases are used to express similar causal effects. Therefore, I present a system that utilizes generalized concepts to extract causal relationships. The proposed algorithms overcome surface variations in written expressions of causal relationships and discover the domino effects between climate events and human security. This semi-supervised approach alleviates the need for labor intensive keyword list development and annotated datasets. Experimental evaluations by domain experts achieve an average precision of 82%. Qualitative assessments of causal chains show that results are consistent with the 2014 IPCC report illuminating causal mechanisms underlying the linkages between climatic stresses and social instability.
ContributorsAlashri, Saud (Author) / Davulcu, Hasan (Thesis advisor) / Desouza, Kevin C. (Committee member) / Maciejewski, Ross (Committee member) / Hsiao, Sharon (Committee member) / Arizona State University (Publisher)
Created2018
157864-Thumbnail Image.png
Description
Computer science education is an increasingly vital area of study with various challenges that increase the difficulty level for new students resulting in higher attrition rates. As part of an effort to resolve this issue, a new visual programming language environment was developed for this research, the Visual IoT and

Computer science education is an increasingly vital area of study with various challenges that increase the difficulty level for new students resulting in higher attrition rates. As part of an effort to resolve this issue, a new visual programming language environment was developed for this research, the Visual IoT and Robotics Programming Language Environment (VIPLE). VIPLE is based on computational thinking and flowchart, which reduces the needs of memorization of detailed syntax in text-based programming languages. VIPLE has been used at Arizona State University (ASU) in multiple years and sections of FSE100 as well as in universities worldwide. Another major issue with teaching large programming classes is the potential lack of qualified teaching assistants to grade and offer insight to a student’s programs at a level beyond output analysis.

In this dissertation, I propose a novel framework for performing semantic autograding, which analyzes student programs at a semantic level to help students learn with additional and systematic help. A general autograder is not practical for general programming languages, due to the flexibility of semantics. A practical autograder is possible in VIPLE, because of its simplified syntax and restricted options of semantics. The design of this autograder is based on the concept of theorem provers. To achieve this goal, I employ a modified version of Pi-Calculus to represent VIPLE programs and Hoare Logic to formalize program requirements. By building on the inference rules of Pi-Calculus and Hoare Logic, I am able to construct a theorem prover that can perform automated semantic analysis. Furthermore, building on this theorem prover enables me to develop a self-learning algorithm that can learn the conditions for a program’s correctness according to a given solution program.
ContributorsDe Luca, Gennaro (Author) / Chen, Yinong (Thesis advisor) / Liu, Huan (Thesis advisor) / Hsiao, Sharon (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2020