Matching Items (857)
Filtering by

Clear all filters

150006-Thumbnail Image.png
Description
ABSTRACT There is a body of literature--albeit largely from the UK and Australia--that examines the ways in which class and gender influence life course, including educational attainment; however, much of this literature offers explanations and analyses for why individuals choose the life course they do.

ABSTRACT There is a body of literature--albeit largely from the UK and Australia--that examines the ways in which class and gender influence life course, including educational attainment; however, much of this literature offers explanations and analyses for why individuals choose the life course they do. By assuming a cause-effect relationship between class and gender and life course, these studies perpetuate the idea that life can be predicted and controlled. Such an approach implies there is but one way of viewing--or an "official reading" of--the experience of class and gender. This silences other readings. This study goes beneath these "interpretations" and explores the phenomenon of identity and identity making in women who grew up working-class. Included is an investigation into how these women recognize and participate in their own identity making, identifying the interpretations they created and apply to their experience and the ways in which they juxtapose their educative experience. Using semi-structured interview I interviewed 21 women with working-class habitués. The strategy of inquiry that corresponded best to the goal of this project was heuristics, a variant of empathetic phenomenology. Heuristics distinguishes itself by including the life experience of the researcher while still showing how different people may participate in an event in their lives and how these individuals may give it radically different meanings. This has two effects: (1) the researcher recognizes that their own life experience affects their interpretations of these stories and (2) it elucidates the researcher's own life as it relates to identity formation and educational experience. Two, heuristics encourages different ways of presenting findings through a variety of art forms meant to enhance the immediacy and impact of an experience rather than offer any explanation of it. As a result of the research, four themes essential to locating the experience of women who grew up working class were discovered: making, paying attention, taking care, and up. These themes have pedagogic significance as women with working-class habitués navigate from this social space: the downstream effect of which is how and what these women take up as education.
ContributorsDecker, Shannon Irene (Author) / Blumenfeld-Jones, Donald (Thesis advisor) / Richards-Young, Gillian (Committee member) / Sandlin, Jennifer (Committee member) / Arizona State University (Publisher)
Created2011
150008-Thumbnail Image.png
Description
Proponents of current educational reform initiatives emphasize strict accountability, the standardization of curriculum and pedagogy and the use of standardized tests to measure student learning and indicate teacher, administrator and school performance. As a result, professional learning communities have emerged as a platform for teachers to collaborate with one another

Proponents of current educational reform initiatives emphasize strict accountability, the standardization of curriculum and pedagogy and the use of standardized tests to measure student learning and indicate teacher, administrator and school performance. As a result, professional learning communities have emerged as a platform for teachers to collaborate with one another in order to improve their teaching practices, increase student achievement and promote continuous school improvement. The primary purpose of this inquiry was to investigate how teachers respond to working in professional learning communities in which the discourses privilege the practice of regularly comparing evidence of students' learning and results. A second purpose was to raise questions about how the current focus on standardization, assessment and accountability impacts teachers, their interactions and relationships with one another, their teaching practices, and school culture. Participants in this qualitative, ethnographic inquiry included fifteen teachers working within Green School District (a pseudonym). Initial interviews were conducted with all teachers, and responses were categorized in a typology borrowed from Barone (2008). Data analysis involved attending to the behaviors and experiences of these teachers, and the meanings these teachers associated with those behaviors and events. Teachers of GSD responded differently to the various layers of expectations and pressures inherent in the policies and practices in education today. The experiences of the teachers from GSD confirm the body of research that illuminates the challenges and complexity of working in collaborative forms of professional development, situated within the present era of accountability. Looking through lenses privileged by critical theorists, this study examined important intended and unintended consequences inherent in the educational practices of standardization and accountability. The inquiry revealed that a focus on certain "results" and the demand to achieve short terms gains may impede the creation of successful, collaborative, professional learning communities.
ContributorsBenson, Karen (Author) / Barone, Thomas (Thesis advisor) / Berliner, David (Committee member) / Enz, Billie (Committee member) / Arizona State University (Publisher)
Created2011
150029-Thumbnail Image.png
Description
A dual-channel directional digital hearing aid (DHA) front-end using a fully differential difference amplifier (FDDA) based Microphone interface circuit (MIC) for a capacitive Micro Electro Mechanical Systems (MEMS) microphones and an adaptive-power analog font end (AFE) is presented. The Microphone interface circuit based on FDDA converts

A dual-channel directional digital hearing aid (DHA) front-end using a fully differential difference amplifier (FDDA) based Microphone interface circuit (MIC) for a capacitive Micro Electro Mechanical Systems (MEMS) microphones and an adaptive-power analog font end (AFE) is presented. The Microphone interface circuit based on FDDA converts the capacitance variations into voltage signal, achieves a noise of 32 dB SPL (sound pressure level) and an SNR of 72 dB, additionally it also performs single to differential conversion allowing for fully differential analog signal chain. The analog front-end consists of 40dB VGA and a power scalable continuous time sigma delta ADC, with 68dB SNR dissipating 67u¬W from a 1.2V supply. The ADC implements a self calibrating feedback DAC, for calibrating the 2nd order non-linearity. The VGA and power scalable ADC is fabricated on 0.25 um CMOS TSMC process. The dual channels of the DHA are precisely matched and achieve about 0.5dB gain mismatch, resulting in greater than 5dB directivity index. This will enable a highly integrated and low power DHA
ContributorsNaqvi, Syed Roomi (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Chae, Junseok (Committee member) / Barnby, Hugh (Committee member) / Aberle, James T., 1961- (Committee member) / Arizona State University (Publisher)
Created2011
150034-Thumbnail Image.png
Description
Being properly prepared is one of the keys to surviving an emergency or a disaster. In order to be prepared, people need appropriate education in preparedness, which includes elements of prevention, and planning. There is a definite need to better prepare our nation's citizens in order for them to safely

Being properly prepared is one of the keys to surviving an emergency or a disaster. In order to be prepared, people need appropriate education in preparedness, which includes elements of prevention, and planning. There is a definite need to better prepare our nation's citizens in order for them to safely respond in times of a disaster. It also seems likely that the earlier concepts and skills are learned, the easier those concepts and skills would be to remember and the more proficient one would become in implementing them. Therefore, it seems appropriate to teach emergency preparedness concepts and skills early on in the educational process. This means that significant efforts need to be directed toward learning, what impediments currently exist, what is helpful, and how preparedness concepts and skills can be taught to our children. A survey was distributed to third, fourth, and fifth grade teachers, asking them questions about emergency preparedness lessons in the classroom. Results indicated that the majority of teachers would be willing to teach emergency preparedness if the curriculum met current academic standards and they were given adequate resources to teach this subject. This study provides ideas, concepts and motivation for teachers to use in a cross-curricular approach to teaching emergency preparedness in the classroom. This is accomplished by presenting examples of newly developed curriculum/lesson plans that meet state academic standards, based on the current Community Emergency Response Team program and on children's fiction literature for the appropriate age group. A list of literature that could be used in this development is also provided in this study.
ContributorsChristensen, Christian B (Author) / Edwards, David (Thesis advisor) / Olson, Larry (Committee member) / Peterson, Danny (Committee member) / Arizona State University (Publisher)
Created2011
150036-Thumbnail Image.png
Description
Demand for biosensor research applications is growing steadily. According to a new report by Frost & Sullivan, the biosensor market is expected to reach $14.42 billion by 2016. Clinical diagnostic applications continue to be the largest market for biosensors, and this demand is likely to continue through 2016 and beyond.

Demand for biosensor research applications is growing steadily. According to a new report by Frost & Sullivan, the biosensor market is expected to reach $14.42 billion by 2016. Clinical diagnostic applications continue to be the largest market for biosensors, and this demand is likely to continue through 2016 and beyond. Biosensor technology for use in clinical diagnostics, however, requires translational research that moves bench science and theoretical knowledge toward marketable products. Despite the high volume of academic research to date, only a handful of biomedical devices have become viable commercial applications. Academic research must increase its focus on practical uses for biosensors. This dissertation is an example of this increased focus, and discusses work to advance microfluidic-based protein biosensor technologies for practical use in clinical diagnostics. Four areas of work are discussed: The first involved work to develop reusable/reconfigurable biosensors that are useful in applications like biochemical science and analytical chemistry that require detailed sensor calibration. This work resulted in a prototype sensor and an in-situ electrochemical surface regeneration technique that can be used to produce microfluidic-based reusable biosensors. The second area of work looked at non-specific adsorption (NSA) of biomolecules, which is a persistent challenge in conventional microfluidic biosensors. The results of this work produced design methods that reduce the NSA. The third area of work involved a novel microfluidic sensing platform that was designed to detect target biomarkers using competitive protein adsorption. This technique uses physical adsorption of proteins to a surface rather than complex and time-consuming immobilization procedures. This method enabled us to selectively detect a thyroid cancer biomarker, thyroglobulin, in a controlled-proteins cocktail and a cardiovascular biomarker, fibrinogen, in undiluted human serum. The fourth area of work involved expanding the technique to produce a unique protein identification method; Pattern-recognition. A sample mixture of proteins generates a distinctive composite pattern upon interaction with a sensing platform consisting of multiple surfaces whereby each surface consists of a distinct type of protein pre-adsorbed on the surface. The utility of the "pattern-recognition" sensing mechanism was then verified via recognition of a particular biomarker, C-reactive protein, in the cocktail sample mixture.
ContributorsChoi, Seokheun (Author) / Chae, Junseok (Thesis advisor) / Tao, Nongjian (Committee member) / Yu, Hongyu (Committee member) / Forzani, Erica (Committee member) / Arizona State University (Publisher)
Created2011
149988-Thumbnail Image.png
Description
Alzheimer's Disease (AD) is a debilitating neurodegenerative disease. The disease leads to dementia and loss of cognitive functions and affects about 4.5 million people in the United States. It is the 7th leading cause of death and is a huge financial burden on the healthcare industry. There are no means

Alzheimer's Disease (AD) is a debilitating neurodegenerative disease. The disease leads to dementia and loss of cognitive functions and affects about 4.5 million people in the United States. It is the 7th leading cause of death and is a huge financial burden on the healthcare industry. There are no means of diagnosing the disease before neurodegeneration is significant and sadly there is no cure that controls its progression. The protein beta-amyloid or Aâ plays an important role in the progression of the disease. It is formed from the cleavage of the Amyloid Precursor Protein by two enzymes - â and ã-secretases and is found in the plaques that are deposits found in Alzheimer brains. This work describes the generation of therapeutics based on inhibition of the cleavage by â-secretase. Using in-vitro recombinant antibody display libraries to screen for single chain variable fragment (scFv) antibodies; this work describes the isolation and characterization of scFv that target the â-secretase cleavage site on APP. This approach is especially relevant since non-specific inhibition of the enzyme may have undesirable effects since the enzyme has been shown to have other important substrates. The scFv iBSEC1 successfully recognized APP, reduced â-secretase cleavage of APP and reduced Aâ levels in a cell model of Alzheimer's Disease. This work then describes the first application of bispecific antibody therapeutics to Alzheimer's Disease. iBSEC1 scFv was combined with a proteolytic scFv that enhances the "good" pathway (á-secretase cleavage) that results in alternative cleavage of APP to generate the bispecific tandem scFv - DIA10D. DIA10D reduced APP cleavage by â-secretase and steered it towards the "good" pathway thus increasing the generation of the fragment sAPPá which is neuroprotective. Finally, treatment with iBSEC1 is evaluated for reduced oxidative stress, which is observed in cells over expressing APP when they are exposed to stress. Recombinant antibody based therapeutics like scFv have several advantages since they retain the high specificity of the antibodies but are safer since they lack the constant region and are smaller, potentially facilitating easier delivery to the brain
ContributorsBoddapati, Shanta (Author) / Sierks, Michael (Thesis advisor) / Arizona State University (Publisher)
Created2011
149778-Thumbnail Image.png
Description
Federal education policies call for school district leaders to promote classroom technology integration to prepare students with 21st century skills. However, schools are struggling to integrate technology effectively, with students often reporting that they feel like they need to power down and step back in time technologically when they enter

Federal education policies call for school district leaders to promote classroom technology integration to prepare students with 21st century skills. However, schools are struggling to integrate technology effectively, with students often reporting that they feel like they need to power down and step back in time technologically when they enter classrooms. The lack of meaningful technology use in classrooms indicates a need for increased teacher preparation. The purpose of this study was to investigate the impact a coaching model of professional development had on school administrators` abilities to increase middle school teachers` technology integration in their classrooms. This study attempted to coach administrators to develop and articulate a vision, cultivate a culture, and model instruction relative to the meaningful use of instructional technology. The study occurred in a middle school. Data for this case study were collected via administrator interviews, the Principal`s Computer Technology Survey, structured observations using the Higher Order Thinking, Engaged Learning, Authentic Learning, Technology Use protocol, field notes, the Technology Integration Matrix, teacher interviews, and a research log. Findings concluded that cultivating change in an organization is a complex process that requires commitment over an extended period of time. The meaningful use of instructional technology remained minimal at the school during fall 2010. My actions as a change agent informed the school`s administrators about the role meaningful use of technology can play in instruction. Limited professional development, administrative vision, and expectations minimized the teachers` meaningful use of instructional technology; competing priorities and limited time minimized the administrators` efforts to improve the meaningful use of instructional technology. Realizing that technology proficient teachers contribute to student success with technology, it may be wise for administrators to incorporate technology-enriched professional development and exercise their leadership abilities to promote meaningful technology use in classrooms.
ContributorsRobertson, Kristen (Author) / Moore, David (Thesis advisor) / Cheatham, Greg (Committee member) / Catalano, Ruth (Committee member) / Arizona State University (Publisher)
Created2011
149782-Thumbnail Image.png
Description
In this work, a novel method is developed for making nano- and micro- fibrous hydrogels capable of preventing the rejection of implanted materials. This is achieved by either (1) mimicking the native cellular environment, to exert fine control over the cellular response or (2) acting as a protective barrier, to

In this work, a novel method is developed for making nano- and micro- fibrous hydrogels capable of preventing the rejection of implanted materials. This is achieved by either (1) mimicking the native cellular environment, to exert fine control over the cellular response or (2) acting as a protective barrier, to camouflage the foreign nature of a material and evade recognition by the immune system. Comprehensive characterization and in vitro studies described here provide a foundation for developing substrates for use in clinical applications. Hydrogel dextran and poly(acrylic acid) (PAA) fibers are formed via electrospinning, in sizes ranging from nanometers to microns in diameter. While "as-electrospun" fibers are continuous in length, sonication is used to fragment fibers into short fiber "bristles" and generate nano- and micro- fibrous surface coatings over a wide range of topographies. Dex-PAA fibrous surfaces are chemically modified, and then optimized and characterized for non-fouling and ECM-mimetic properties. The non-fouling nature of fibers is verified, and cell culture studies show differential responses dependent upon chemical, topographical and mechanical properties. Dex-PAA fibers are advantageously unique in that (1) a fine degree of control is possible over three significant parameters critical for modifying cellular response: topography, chemistry and mechanical properties, over a range emulating that of native cellular environments, (2) the innate nature of the material is non-fouling, providing an inert background for adding back specific bioactive functionality, and (3) the fibers can be applied as a surface coating or comprise the scaffold itself. This is the first reported work of dex-PAA hydrogel fibers formed via electrospinning and thermal cross-linking, and unique to this method, no toxic solvents or cross-linking agents are needed to create hydrogels or for surface attachment. This is also the first reported work of using sonication to fragment electrospun hydrogel fibers, and in which surface coatings were made via simple electrostatic interaction and dehydration. These versatile features enable fibrous surface coatings to be applied to virtually any material. Results of this research broadly impact the design of biomaterials which contact cells in the body by directing the consequent cell-material interaction.
ContributorsLouie, Katherine BoYook (Author) / Massia, Stephen P (Thesis advisor) / Bennett, Kevin (Committee member) / Garcia, Antonio (Committee member) / Pauken, Christine (Committee member) / Vernon, Brent (Committee member) / Arizona State University (Publisher)
Created2011
149652-Thumbnail Image.png
Description
The purpose of this study was to investigate the use of the design characteristics component of the Jeffries/National League for Nursing Framework for Designing, Implementing, and Evaluating Simulations when developing a simulation-based approach to teaching structured communication to new graduate nurses. The setting for the study was a medium sized

The purpose of this study was to investigate the use of the design characteristics component of the Jeffries/National League for Nursing Framework for Designing, Implementing, and Evaluating Simulations when developing a simulation-based approach to teaching structured communication to new graduate nurses. The setting for the study was a medium sized tertiary care hospital located in the southwestern United States. Participants in the study were an instructional designer (who also served as the researcher), two graduate nursing education specialists, one unit based educator, and 27 new graduate nurses and registered nurses who had been in practice for less than six months. Design and development research was employed to examine the processes used to design the simulation, implementation of the simulation by faculty, and course evaluation data from both students and faculty. Data collected from the designer, faculty and student participants were analyzed for evidence on how the design characteristics informed the design and implementation of the course, student achievement of course goals, as well as student and faculty evaluation of the course. These data were used to identify the strengths and weaknesses of the model in this context as well as suggestions for strengthening the model. Findings revealed that the model generally functioned well in this context. Particular strengths of the model were its emphasis on problem-solving and recommendations for attending to fidelity of clinical scenarios. Weaknesses of the model were inadequate guidance for designing student preparation, student support, and debriefing. Additionally, the model does not address the role of observers or others who are not assigned the role of primary nurse during simulations. Recommendations for strengthening the model include addressing these weaknesses by incorporating existing evidence in the instructional design of experiential learning and by scaffolding students during problem-solving. The results of the study also suggested interrelationships among the design characteristics that were not previously described; further exploration of this finding may strengthen the model. Faculty and instructional designers creating clinical simulations in this context would benefit from using the Jeffries/National League for Nursing Model, adding external resources to supplement in areas where the model does not currently provide adequate guidance.
ContributorsWilson, Rebecca D (Author) / Klein, James D. (Thesis advisor) / Hagler, Debra (Committee member) / Savenye, Wilhelmina (Committee member) / Arizona State University (Publisher)
Created2011
150370-Thumbnail Image.png
Description
Individuals' experiences, environment, and education greatly impact their entire being. Similarly, a designer is affected by these elements, which impacts how, what and why they design. In order for design education to generate designers who are more socially aware problem solvers, that education must introduce complex social matters and not

Individuals' experiences, environment, and education greatly impact their entire being. Similarly, a designer is affected by these elements, which impacts how, what and why they design. In order for design education to generate designers who are more socially aware problem solvers, that education must introduce complex social matters and not just design skills. Traditionally designers learned through apprenticing a master. Most design education has moved away from this traditional model and has begun incorporating a well-rounded program of study, yet there are still more improvements to be made. This research proposes a new Integrated Transformational Experience Model, ITEM, for design education which will be rooted in sustainability, cultural integration, social embeddedness, and discipline collaboration. The designer will be introduced to new ideas and experiences from the immersion of current social issues where they will gain experience creating solutions to global problems enabling them to become catalysts of change. This research is based on interviews with industrial design students to gain insights, benefits and drawbacks of the current model of design education. This research will expand on the current model for design education, combining new ideas that will shed light on the future of design disciplines through the education and motivation of designers. The desired outcome of this study is to incorporate hands on learning through social issues in design classrooms, identify ways to educate future problem solvers, and inspire more research on this issue.
ContributorsWingate, Andrea (Author) / Takamura, John (Thesis advisor) / Stamm, Jill (Committee member) / Bender, Diane (Committee member) / Arizona State University (Publisher)
Created2011