Matching Items (142)
Filtering by

Clear all filters

Description

I have created a workshop for educators. The workshop describes the significance of adverse childhood experiences in a student's life. It also displays how an educator might use Social Emotional Learning strategies to support students who have experienced trauma.

ContributorsPierce, Alyssa Cruz (Author) / Oliver, Jill (Thesis director) / Roderick, Valerie (Committee member) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136271-Thumbnail Image.png
Description
The OMFIT (One Modeling Framework for Integrated Tasks) modeling environment and the BRAINFUSE module have been deployed on the PPPL (Princeton Plasma Physics Laboratory) computing cluster with modifications that have rendered the application of artificial neural networks (NNs) to the TRANSP databases for the JET (Joint European Torus), TFTR (Tokamak

The OMFIT (One Modeling Framework for Integrated Tasks) modeling environment and the BRAINFUSE module have been deployed on the PPPL (Princeton Plasma Physics Laboratory) computing cluster with modifications that have rendered the application of artificial neural networks (NNs) to the TRANSP databases for the JET (Joint European Torus), TFTR (Tokamak Fusion Test Reactor), and NSTX (National Spherical Torus Experiment) devices possible through their use. This development has facilitated the investigation of NNs for predicting heat transport profiles in JET, TFTR, and NSTX, and has promoted additional investigations to discover how else NNs may be of use to scientists at PPPL. In applying NNs to the aforementioned devices for predicting heat transport, the primary goal of this endeavor is to reproduce the success shown in Meneghini et al. in using NNs for heat transport prediction in DIII-D. Being able to reproduce the results from is important because this in turn would provide scientists at PPPL with a quick and efficient toolset for reliably predicting heat transport profiles much faster than any existing computational methods allow; the progress towards this goal is outlined in this report, and potential additional applications of the NN framework are presented.
ContributorsLuna, Christopher Joseph (Author) / Tang, Wenbo (Thesis director) / Treacy, Michael (Committee member) / Orso, Meneghini (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2015-05
136409-Thumbnail Image.png
Description
Twitter, the microblogging platform, has grown in prominence to the point that the topics that trend on the network are often the subject of the news and other traditional media. By predicting trends on Twitter, it could be possible to predict the next major topic of interest to the public.

Twitter, the microblogging platform, has grown in prominence to the point that the topics that trend on the network are often the subject of the news and other traditional media. By predicting trends on Twitter, it could be possible to predict the next major topic of interest to the public. With this motivation, this paper develops a model for trends leveraging previous work with k-nearest-neighbors and dynamic time warping. The development of this model provides insight into the length and features of trends, and successfully generalizes to identify 74.3% of trends in the time period of interest. The model developed in this work provides understanding into why par- ticular words trend on Twitter.
ContributorsMarshall, Grant A (Author) / Liu, Huan (Thesis director) / Morstatter, Fred (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
136516-Thumbnail Image.png
Description
Bots tamper with social media networks by artificially inflating the popularity of certain topics. In this paper, we define what a bot is, we detail different motivations for bots, we describe previous work in bot detection and observation, and then we perform bot detection of our own. For our bot

Bots tamper with social media networks by artificially inflating the popularity of certain topics. In this paper, we define what a bot is, we detail different motivations for bots, we describe previous work in bot detection and observation, and then we perform bot detection of our own. For our bot detection, we are interested in bots on Twitter that tweet Arabic extremist-like phrases. A testing dataset is collected using the honeypot method, and five different heuristics are measured for their effectiveness in detecting bots. The model underperformed, but we have laid the ground-work for a vastly untapped focus on bot detection: extremist ideal diffusion through bots.
ContributorsKarlsrud, Mark C. (Author) / Liu, Huan (Thesis director) / Morstatter, Fred (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
135834-Thumbnail Image.png
Description
There is still a major underrepresentation of females in STEM fields, with many girls beginning to lose interest as early as middle school. This is due to a variety of factors including lack of role models, stereotypes, ineffective teaching methods, and peer influence. A popular way to increase female interest

There is still a major underrepresentation of females in STEM fields, with many girls beginning to lose interest as early as middle school. This is due to a variety of factors including lack of role models, stereotypes, ineffective teaching methods, and peer influence. A popular way to increase female interest is through day camps and other programs where girls complete a variety of activities related to science and engineering. These activities are usually designed around problem-based learning, a student-lead approach to teaching that requires students to work collaboratively and use background knowledge to solve some sort of given problem. In this project, a day camp for middle school girls was created and implemented to increase student interest in STEM through three problem-based learning activities. By analyzing survey data, it was concluded that the camp was successful in increasing interest and changing participants' attitudes towards science. This approach to learning could be applied to other subject areas, including mathematics, to increase the interest of both male and female students at the secondary level.
ContributorsVitale, Nathalie Maria (Author) / Walters, Molina (Thesis director) / Oliver, Jill (Committee member) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135837-Thumbnail Image.png
Description
Studies have shown that arts programs have a positive impact on students' abilities to achieve academic success, showcase creativity, and stay focused inside and outside of the classroom. However, as school funding drops, arts programs are often the first to be cut from school curricula. Rather than drop art completely,

Studies have shown that arts programs have a positive impact on students' abilities to achieve academic success, showcase creativity, and stay focused inside and outside of the classroom. However, as school funding drops, arts programs are often the first to be cut from school curricula. Rather than drop art completely, general education teachers have the opportunity to integrate arts instruction with other content areas in their classrooms. Traditional fraction lessons and Music-infused fraction lessons were administered to two classes of fourth-grade students. The two types of lessons were presented over two separate days in each classroom. Mathematics worksheets and attitudinal surveys were administered to each student in each classroom after each lesson to gauge their understanding of the mathematics content as well as their self-perceived understanding, enjoyment and learning related to the lessons. Students in both classes were found to achieve significantly higher mean scores on the traditional fraction lesson than the music-infused fraction lesson. Lower scores in the music-infused fraction lesson may have been due to the additional component of music for students unfamiliar with music principles. Students tended to express satisfaction for both lessons. In future studies, it would be recommended to spend additional lesson instruction time on the principles of music in order help students reach deeper understanding of the music-infused fraction lesson. Other recommendations include using colorful visuals and interactive activities to establish both fraction and music concepts.
ContributorsGerrish, Julie Kathryn (Author) / Zambo, Ronald (Thesis director) / Hutchins, Catherine (Committee member) / Division of Teacher Preparation (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135841-Thumbnail Image.png
Description
Over the past few years, the issue of childhood trauma in the United States has become significant. A growing number of children are experiencing abuse, neglect, or some other form of maltreatment each year. Considering the stressful home lives of maltreated children, the one sure sanctuary is school. However, this

Over the past few years, the issue of childhood trauma in the United States has become significant. A growing number of children are experiencing abuse, neglect, or some other form of maltreatment each year. Considering the stressful home lives of maltreated children, the one sure sanctuary is school. However, this idea requires teachers to be actively involved in identifying and caring for the children who need it most. Traumatic childhood experiences leave lasting scars on its victims, so it is helpful if teachers learn how to identify and support children who have lived through them. It is unfortunate that teachers will most likely encounter children throughout their career who have experienced horrendous things, but it is a reality. With this being said, teachers need to develop an understanding of what traumatized children live with, and learn how to address these issues with skilled sensitivity. Schools are not just a place where children learn how to read and write; they build the foundation for a successful life. This project was designed to provide teachers with a necessary resource for helping children who have suffered traumatic experiences. The methodology of this project began with interviews with organizations specializing in working with traumatized children such as Arizonans for Children, Free Arts for Abused Children, The Sojourner Center, and UMOM. The next step was a review of the current literature on the subject of childhood trauma. The findings have all been compiled into one, convenient document for teacher use and distribution. Upon completion of this document, an interactive video presentation will be made available through an online education website, so that distribution will be made simpler. Hopefully, teachers will share the information with people in their networks and create a chain reaction. The goal is to make it available to as many teachers as possible, so that more children will receive the support they need.
ContributorsHanrahan, Katelyn Ann (Author) / Dahlstrom, Margo (Thesis director) / Kelley, Michael (Committee member) / Division of Teacher Preparation (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135964-Thumbnail Image.png
Description
There are two types of understanding when it comes to learning math: procedural understanding and conceptual understanding. I grew up with a rigorous learning curriculum and learned math through endless drills and practices. I was less motivated to understand the reason behind those procedures. I think both types of understanding

There are two types of understanding when it comes to learning math: procedural understanding and conceptual understanding. I grew up with a rigorous learning curriculum and learned math through endless drills and practices. I was less motivated to understand the reason behind those procedures. I think both types of understanding are equally important in learning mathematics. Procedural fluency is the "ability to apply procedures accurately, efficiently, and flexibly... to build or modify procedures from other procedures" (National Council of Teachers of Mathematics, 2015). Procedural understanding may perceive as merely about the understanding of the arithmetic and memorizing the steps with no understanding but in reality, students need to decide which procedure to use for a given situation; here is where the conceptual understanding comes in handy. Students need the skills to integrate concepts and procedures to develop their own ways to solve a problem, they need to know how to do it and why they do it that way. The purpose of this 5-day unit is teaching with conceptual understanding through hands-on activities and the use of tools to learn geometry. Through these lesson plans, students should be able to develop the conceptual understanding of the angles created by parallel lines and transversal, interior and exterior angles of triangles and polygons, and the use of similar triangles, while developing the procedural understanding. These lesson plans are created to align with the eighth grade Common Core Standards. Students are learning angles through the use of protractor and patty paper, making a conjecture based on their data and experience, and real-life problem solving. The lesson plans used the direct instruction and the 5E inquiry template from the iTeachAZ program. The direct instruction lesson plan includes instructional input, guided practice and individual practice. The 5E inquiry lesson plan has five sections: engage, explore, explain, elaborate and evaluate.
ContributorsLeung, Miranda Wing-Mei (Author) / Kurz, Terri (Thesis director) / Walters, Molina (Committee member) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135974-Thumbnail Image.png
Description
Scientific literacy is a critical part of the education of high school students. Students can demonstrate literacy in science by being able to read and write scientific reports as well as recognize and discuss how science affects daily lives. However, many teachers are not familiar with the topic and do

Scientific literacy is a critical part of the education of high school students. Students can demonstrate literacy in science by being able to read and write scientific reports as well as recognize and discuss how science affects daily lives. However, many teachers are not familiar with the topic and do not have the resources necessary to implement it into their classrooms. This project attempts to create a website that compiles information from many sources to one concise location that is simple for teachers to use. The goal of the website is to provide teachers with a resource that they can access and use quickly despite their busy schedules. The information provided is easily translatable into a classroom, and examples of lessons as well as links to resources are provided. Considerations of difficulties such as the need to prepare students for standardized tests as well as limited budgets were brought into consideration when choosing the concepts suggested for teachers. Aspects of scientific literacy addressed are: project based learning, virtual labs, apprenticeship programs, and peer mediated learning strategies. The project also addresses how demographics that are represented at lower levels in science can be aided. These groups include female students, minorities, and students with High Functioning Autism (HFA). The website portion of the project is accompanied by a paper that summarizes the research findings as well as the personal reaction of the author and how her teaching has been affected by the study. Upon completion of the project the website will be shared with school districts across Phoenix to provide teachers with access to the resources compiled in it.
ContributorsBlome, Rebecca Ellen (Author) / Marshall, Pamela (Thesis director) / Hart, Juliet (Committee member) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
136610-Thumbnail Image.png
Description
STEM education stands for science, technology, engineering and mathematics, and is necessary for students to keep up with global competition in the changing job market, technological advancements and challenges of the future. However, American students are lacking STEM achievement at the state, national and global levels. To combat this lack

STEM education stands for science, technology, engineering and mathematics, and is necessary for students to keep up with global competition in the changing job market, technological advancements and challenges of the future. However, American students are lacking STEM achievement at the state, national and global levels. To combat this lack of achievement I propose that STEM instruction should begin in preschool, be integrated into the curriculum and be inquiry based. To support this proposal I created a month-long physics unit for preschoolers in a Head Start classroom. Students investigated the affect of incline, friction and weight on the distance of a rolling object, while developing their pre-math, pre-literacy and social emotional skills.
ContributorsGarrison, Victoria Leigh (Author) / Kelley, Michael (Thesis director) / Dahlstrom, Margo (Committee member) / Barrett, The Honors College (Contributor) / Division of Teacher Preparation (Contributor)
Created2015-05