Matching Items (57)
Filtering by

Clear all filters

133362-Thumbnail Image.png
Description
Aside from uplifting and tearing down the mood of a young LGBTQ+ kid, journalistic media has the potential to alter the way audiences understand and react to individuals of the LGBTQ+ community. Looking at the rhetorical approaches, frameworks, and expanded narratives of news sources, this project engages with the concepts

Aside from uplifting and tearing down the mood of a young LGBTQ+ kid, journalistic media has the potential to alter the way audiences understand and react to individuals of the LGBTQ+ community. Looking at the rhetorical approaches, frameworks, and expanded narratives of news sources, this project engages with the concepts of same-sex marriage, lifestyles, bans, and children in education in order to attain an understanding of what media messages are being shared, how they are being communicated, and what the implications of such rhetoric are. Summary of the findings:
• Same-sex marriage as the win that cannot be repeated.
Infamously known as the central legal battle for the LGBTQ+ community, same-sex marriage finds itself in many political speeches, campaigns, and social commentaries. Interestingly, after being legalized through a Supreme Court decision in the United States, Same-Sex Marriage finds itself framed as the social inevitability that should not be repeated in politics or any legal shift. In other words, “the gays have won this battle, but not the war.”
• There are risks around the “LGBTQ+ lifestyle” and its careful catering to an elite minority and the mediation through bans.
The risks of the LGBTQ+ “lifestyle” date back far, with many connotations being attached to being LGBTQ+ (AIDS epidemics, etc.). In modern journalism, many media outlets portray LGBTQ+ individuals to be a tiny minority (.001% according to some) that demands the whole society to adhere to their requests. This framework portrays the LGBTQ+ community as oppressors and obsessed advocates that can never “seem to get enough” (ex: more than just marriage). The bans are framed as the neutralizing factor to the catering.
• LGBTQ+ children and topics in academic and social spaces are the extreme degree.
When it comes to LGBTQ+ issues and conversations as they revolve around children, media outlets have some of the most passionate opinions about them. Often portrayed as “the line that shouldn’t be crossed,” LGBTQ+ issues, as they find themselves in schools and other spaces, are thus portrayed as bearable to a certain degree, never completely. Claims of indoctrination are also presented prominently even when institutional efforts are to protect LGBTQ+ kids.
ContributorsNieto Calderon, Ramon Antonio (Author) / Himberg, Julia (Thesis director) / Sturges, Robert (Committee member) / Department of English (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134286-Thumbnail Image.png
Description
Many researchers aspire to create robotics systems that assist humans in common office tasks, especially by taking over delivery and messaging tasks. For meaningful interactions to take place, a mobile robot must be able to identify the humans it interacts with and communicate successfully with them. It must also be

Many researchers aspire to create robotics systems that assist humans in common office tasks, especially by taking over delivery and messaging tasks. For meaningful interactions to take place, a mobile robot must be able to identify the humans it interacts with and communicate successfully with them. It must also be able to successfully navigate the office environment. While mobile robots are well suited for navigating and interacting with elements inside a deterministic office environment, attempting to interact with human beings in an office environment remains a challenge due to the limits on the amount of cost-efficient compute power onboard the robot. In this work, I propose the use of remote cloud services to offload intensive interaction tasks. I detail the interactions required in an office environment and discuss the challenges faced when implementing a human-robot interaction platform in a stochastic office environment. I also experiment with cloud services for facial recognition, speech recognition, and environment navigation and discuss my results. As part of my thesis, I have implemented a human-robot interaction system utilizing cloud APIs into a mobile robot, enabling it to navigate the office environment, identify humans within the environment, and communicate with these humans.
Created2017-05
135380-Thumbnail Image.png
Description
Bioscience High School, a small magnet high school located in Downtown Phoenix and a STEAM (Science, Technology, Engineering, Arts, Math) focused school, has been pushing to establish a computer science curriculum for all of their students from freshman to senior year. The school's Mision (Mission and Vision) is to: "..provide

Bioscience High School, a small magnet high school located in Downtown Phoenix and a STEAM (Science, Technology, Engineering, Arts, Math) focused school, has been pushing to establish a computer science curriculum for all of their students from freshman to senior year. The school's Mision (Mission and Vision) is to: "..provide a rigorous, collaborative, and relevant academic program emphasizing an innovative, problem-based curriculum that develops literacy in the sciences, mathematics, and the arts, thus cultivating critical thinkers, creative problem-solvers, and compassionate citizens, who are able to thrive in our increasingly complex and technological communities." Computational thinking is an important part in developing a future problem solver Bioscience High School is looking to produce. Bioscience High School is unique in the fact that every student has a computer available for him or her to use. Therefore, it makes complete sense for the school to add computer science to their curriculum because one of the school's goals is to be able to utilize their resources to their full potential. However, the school's attempt at computer science integration falls short due to the lack of expertise amongst the math and science teachers. The lack of training and support has postponed the development of the program and they are desperately in need of someone with expertise in the field to help reboot the program. As a result, I've decided to create a course that is focused on teaching students the concepts of computational thinking and its application through Scratch and Arduino programming.
ContributorsLiu, Deming (Author) / Meuth, Ryan (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135340-Thumbnail Image.png
Description
Preventive maintenance is a practice that has become popular in recent years, largely due to the increased dependency on electronics and other mechanical systems in modern technologies. The main idea of preventive maintenance is to take care of maintenance-type issues before they fully appear or cause disruption of processes and

Preventive maintenance is a practice that has become popular in recent years, largely due to the increased dependency on electronics and other mechanical systems in modern technologies. The main idea of preventive maintenance is to take care of maintenance-type issues before they fully appear or cause disruption of processes and daily operations. One of the most important parts is being able to predict and foreshadow failures in the system, in order to make sure that those are fixed before they turn into large issues. One specific area where preventive maintenance is a very big part of daily activity is the automotive industry. Automobile owners are encouraged to take their cars in for maintenance on a routine schedule (based on mileage or time), or when their car signals that there is an issue (low oil levels for example). Although this level of maintenance is enough when people are in charge of cars, the rise of autonomous vehicles, specifically self-driving cars, changes that. Now instead of a human being able to look at a car and diagnose any issues, the car needs to be able to do this itself. The objective of this project was to create such a system. The Electronics Preventive Maintenance System is an internal system that is designed to meet all these criteria and more. The EPMS system is comprised of a central computer which monitors all major electronic components in an autonomous vehicle through the use of standard off-the-shelf sensors. The central computer compiles the sensor data, and is able to sort and analyze the readings. The filtered data is run through several mathematical models, each of which diagnoses issues in different parts of the vehicle. The data for each component in the vehicle is compared to pre-set operating conditions. These operating conditions are set in order to encompass all normal ranges of output. If the sensor data is outside the margins, the warning and deviation are recorded and a severity level is calculated. In addition to the individual focus, there's also a vehicle-wide model, which predicts how necessary maintenance is for the vehicle. All of these results are analyzed by a simple heuristic algorithm and a decision is made for the vehicle's health status, which is sent out to the Fleet Management System. This system allows for accurate, effortless monitoring of all parts of an autonomous vehicle as well as predictive modeling that allows the system to determine maintenance needs. With this system, human inspectors are no longer necessary for a fleet of autonomous vehicles. Instead, the Fleet Management System is able to oversee inspections, and the system operator is able to set parameters to decide when to send cars for maintenance. All the models used for the sensor and component analysis are tailored specifically to the vehicle. The models and operating margins are created using empirical data collected during normal testing operations. The system is modular and can be used in a variety of different vehicle platforms, including underwater autonomous vehicles and aerial vehicles.
ContributorsMian, Sami T. (Author) / Collofello, James (Thesis director) / Chen, Yinong (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136695-Thumbnail Image.png
Description
Nations have a vital interest in creating a citizenry with certain attributes and beliefs and, since education contributes to the formation of children's national identity, government authorities can influence educational curricula to construct their ideal citizen. In this thesis, I study the educational systems of Pakistan and Arizona and explore

Nations have a vital interest in creating a citizenry with certain attributes and beliefs and, since education contributes to the formation of children's national identity, government authorities can influence educational curricula to construct their ideal citizen. In this thesis, I study the educational systems of Pakistan and Arizona and explore the historical and conceptual origins of these entities' manipulation of curricula to construct a particular kind of citizen. I argue that an examination of the ethnic studies debate in Tucson, Arizona, in conjunction with Pakistan's history education policy, will illustrate that the educational systems in both these sites are developed to advance the interests of governing authorities. Resource material demonstrates that both educational systems endorse specific accounts of history, omitting information, perspectives, and beliefs. Eliminating or reimagining certain narratives of history alienates some students from identifying as citizens of the state, particularly when contributions of their ethnic, cultural, or religious groups are not included in the country's textbooks.
ContributorsFritcke, Emily Anne (Author) / Saikia, Yasmin (Thesis director) / Haines, Chad (Committee member) / Barrett, The Honors College (Contributor) / Department of English (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor)
Created2014-12
136179-Thumbnail Image.png
Description
CourseKarma is a web application that engages students in their own learning through peer-driven social networking. The influence of technology on students is advancing faster than the school system, and a major gap still lingers between traditional learning techniques and the fast-paced, online culture of today's generation. CourseKarma enriches the

CourseKarma is a web application that engages students in their own learning through peer-driven social networking. The influence of technology on students is advancing faster than the school system, and a major gap still lingers between traditional learning techniques and the fast-paced, online culture of today's generation. CourseKarma enriches the educational experience of today's student by creating a space for collaborative inquiry as well as illuminating the opportunities of self and group learning through online collaboration. The features of CourseKarma foster this student-driven environment. The main focus is on a news-feed and Question and Answer component that provides a space for students to share instant updates as well ask and answer questions of the community. The community can be as broad as the entire ASU student body, as specific as students in BIO155, or even more targeted via specific subjects and or skills. CourseKarma also provides reputation points, which are the sum of all of their votes received, identifying the individual's level and or ranking in each subject or class. This not only gamifies the usual day-to-day learning environment, but it also provides an in-depth analysis of the individual's skills, accomplishments, and knowledge. The community is also able to input and utilize course and professor descriptions/feedback. This will be in a review format providing the students an opportunity to share and give feedback on their experience as well as providing incoming students the opportunity to be prepared for their future classes. All of the student's contributions and collaborative activity within CourseKarma is displayed on their personal profile creating a timeline of their academic achievements. The application was created using modern web programming technologies such as AngualrJS, Javascript, jQuery, Bootstrap, HTML5, CSS3 for the styling and front-end development, Mustache.js for client side templating, and Firebase AngularFire as the back-end and NoSQL database. Other technologies such as Pivitol Tracker was used for project management and user story generation, as well as, Github for version control management and repository creation. Object-oreinted programming concepts were heavily present in the creation of the various data structures, as well as, a voting algorithm was used to manage voting of specific posts. Down the road, CourseKarma could even be a necessary add-on within LinkedIn or Facebook that provides a quick yet extremely in-depth look at an individuals' education, skills, and potential to learn \u2014 based all on their actual contribution to their academic community rather than just a text they wrote up.
ContributorsCho, Sungjae (Author) / Mayron, Liam (Thesis director) / Lobock, Alan (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of Arts, Media and Engineering (Contributor)
Created2015-05
136360-Thumbnail Image.png
Description
The modern web presents an opportunity for educators and researchers to create tools that are highly accessible. Because of the near-ubiquity of modern web browsers, developers who hope to create educational and analytical tools can reach a large au- dience by creating web applications. Using JavaScript, HTML, and other modern

The modern web presents an opportunity for educators and researchers to create tools that are highly accessible. Because of the near-ubiquity of modern web browsers, developers who hope to create educational and analytical tools can reach a large au- dience by creating web applications. Using JavaScript, HTML, and other modern web development technologies, Genie was developed as a simulator to help educators in biology, genetics, and evolution classrooms teach their students about population genetics. Because Genie was designed for the modern web, it is highly accessible to both educators and students, who can access the web application using any modern web browser on virtually any device. Genie demonstrates the efficacy of web devel- opment technologies for demonstrating and simulating complex processes, and it will be a unique educational tool for educators who teach population genetics.
ContributorsRoos, Benjamin Hirsch (Author) / Cartwright, Reed (Thesis director) / Wilson Sayres, Melissa (Committee member) / Mayron, Liam (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
136248-Thumbnail Image.png
Description
In the United States, more than 22 million people are estimated to be affected by the chronic illness, asthma (American Lung Association [ALA], 2014). Of those 22 million, approximately 7.1 million are children (ALA, 2014). An important factor in trying to curb the frequency of asthma attacks is education. Particular

In the United States, more than 22 million people are estimated to be affected by the chronic illness, asthma (American Lung Association [ALA], 2014). Of those 22 million, approximately 7.1 million are children (ALA, 2014). An important factor in trying to curb the frequency of asthma attacks is education. Particular elements of asthma education include symptom recognition, self-management skills, correct administration, and understanding how medications are used to control asthma. A review of the literature shows that multimedia education holds some promise in increasing asthma-knowledge retention. This creative project involved the creation of an asthma-education video with a concomitant asthma-education comic book. Of the two creations, the asthma-education video was used in a former Doctorate of Nursing Practice (DNP) student’s study to supplement a session at a clinic with an asthma educator. The tools included in the study, the Asthma Medication Use Questionnaire (Moya, 2014) and the Asthma Control TestTM (ACTTM; QualityMetric Incorporated, 2002), were completed by the participants prior to and after the implementation of the session that incorporated the video. The results suggested that the video had an effect on asthma control as measured by the ACTTM (QualityMetric Incorporated, 2002), but not on daily preventative asthma inhaler usage as measured by the Asthma Medication Use Questionnaire (Moya, 2014). The comic book has not been evaluated yet. Both multimedia education tools—the comic book and the video—were created as a requirement for the Barrett thesis.
ContributorsVanhkham, Sophia (Co-author) / Wells, Amanda (Co-author) / Stevens, Carol (Thesis director) / Vana, Kimberly (Committee member) / Barrett, The Honors College (Contributor) / Arizona State University. College of Nursing & Healthcare Innovation (Contributor) / Department of English (Contributor) / School of Art (Contributor)
Created2015-05
Description
Technical innovation has always played a part in live theatre, whether in the form of mechanical pieces like lifts and trapdoors to the more recent integration of digital media. The advances of the art form encourage the development of technology, and at the same time, technological development enables the advancement

Technical innovation has always played a part in live theatre, whether in the form of mechanical pieces like lifts and trapdoors to the more recent integration of digital media. The advances of the art form encourage the development of technology, and at the same time, technological development enables the advancement of theatrical expression. As mechanics, lighting, sound, and visual media have made their way into the spotlight, advances in theatrical robotics continue to push for their inclusion in the director's toolbox. However, much of the technology available is gated by high prices and unintuitive interfaces, designed for large troupes and specialized engineers, making it difficult to access for small schools and students new to the medium. As a group of engineering students with a vested interest in the development of the arts, this thesis team designed a system that will enable troupes from any background to participate in the advent of affordable automation. The intended result of this thesis project was to create a robotic platform that interfaces with custom software, receiving commands and transmitting position data, and to design that software so that a user can define intuitive cues for their shows. In addition, a new pathfinding algorithm was developed to support free-roaming automation in a 2D space. The final product consisted of a relatively inexpensive (< $2000) free-roaming platform, made entirely with COTS and standard materials, and a corresponding control system with cue design, wireless path following, and position tracking. This platform was built to support 1000 lbs, and includes integrated emergency stopping. The software allows for custom cue design, speed variation, and dynamic path following. Both the blueprints and the source code for the platform and control system have been released to open-source repositories, to encourage further development in the area of affordable automation. The platform itself was donated to the ASU School of Theater.
ContributorsHollenbeck, Matthew D. (Co-author) / Wiebel, Griffin (Co-author) / Winnemann, Christopher (Thesis director) / Christensen, Stephen (Committee member) / Computer Science and Engineering Program (Contributor) / School of Film, Dance and Theatre (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
Theory Jam is a series of online, education videos that teach music theory in a fun, engaging way. Our project is a response to the growing need for successful online education content. It incorporates strategies for creating effective educational video content and engages with contemporary debates in the field of

Theory Jam is a series of online, education videos that teach music theory in a fun, engaging way. Our project is a response to the growing need for successful online education content. It incorporates strategies for creating effective educational video content and engages with contemporary debates in the field of music theory surrounding the purpose of a music theory education.
ContributorsCannatelli, Joshua Bryce (Co-author) / Daval, Charles Joseph (Co-author) / Miller, April (Thesis director) / Scott, Jason (Committee member) / Tobias, Evan (Committee member) / Department of English (Contributor) / School of Film, Dance and Theatre (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05