Matching Items (49)
Filtering by

Clear all filters

148015-Thumbnail Image.png
Description

Though about 75 percent of American waste is recyclable, only 30 percent of it is actually recycled and less than ten percent of plastics disposed of in the United States in 2015 were recycled. A statistic like this demonstrates the immense need to increase recycling rates in order to move

Though about 75 percent of American waste is recyclable, only 30 percent of it is actually recycled and less than ten percent of plastics disposed of in the United States in 2015 were recycled. A statistic like this demonstrates the immense need to increase recycling rates in order to move towards cultivating a circular economy and benefiting the environment. With Arizona State University’s (ASU) extensive population of on-campus students and faculty, our team was determined to create a solution that would increase recycling rates. After conducting initial market research, our team incentives or education. We conducted market research through student surveys to determine the level of knowledge of our target audience and barriers to entry for local recycling and composting resources. Further, we gained insight into the medium of recycling and sustainability programs they would be interested in participating in. Overall, the results of our surveys demonstrated that a majority of students were interested in participating in these programs, if they were not already involved, and most students on-campus already had access to these resources. Despite having access to these sustainable practices, we identified a knowledge gap between students and their information on how to properly execute sustainable practices such as composting and recycling. In order to address this audience, our team created Circulearning, an educational program that aims to bridge the gap of knowledge and address immediate concerns regarding circular economy topics. By engaging audiences through our quick, accessible educational modules and teaching them about circular practices, we aim to inspire everyone to implement these practices into their own lives. Though our team began the initiative with a focus on implementing these practices solely to ASU campus, we decided to expand our target audience to implement educational programs at all levels after discovering the interest and need for this resource in our community. Our team is extremely excited that our Circulearning educational modules have been shared with a broad audience including students at Mesa Skyline High School, ASU students, and additional connections outside of ASU. With Circulearning, we will educate and inspire people of all ages to live more sustainably and better the environment in which we live.

ContributorsTam, Monet (Co-author) / Chakravarti, Renuka (Co-author) / Carr-Taylor, Kathleen (Co-author) / Byrne, Jared (Thesis director) / Marseille, Alicia (Committee member) / Jordan, Amanda (Committee member) / Department of Supply Chain Management (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147935-Thumbnail Image.png
Description

Student academic performance has far-reaching implications, such as lifetime earnings potential, that are beyond the immediate impact it may have on any individual student (Bureau of Labor Statistics [BLS], 2019). Colleges and universities also have a shared interest in the retention of their students as a poor reputation can depress

Student academic performance has far-reaching implications, such as lifetime earnings potential, that are beyond the immediate impact it may have on any individual student (Bureau of Labor Statistics [BLS], 2019). Colleges and universities also have a shared interest in the retention of their students as a poor reputation can depress enrollment and tarnish their brand. Public institutions have an especially large incentive for student success as many state and federal funding opportunities consider student retention and performance when allocating taxpayer dollars (Li, 2018). To assist in the mutual desire for students to succeed, the Calm Connection start-up venture formed with the goal of seamlessly integrating biofeedback therapy with a student’s unique education needs. Forming the foundation of the resulting Calm Connection app is software patented by NASA which allows for the collection and manipulation of biofeedback monitoring data on mobile devices with distinguishing features such as geolocation. For students, one of the largest barriers to effective learning is issues of focus and information retention, whether due to problems at home, conditions such as ADHD, or the high prevalence of test anxiety among students (Committee on Psychosocial Aspects of Child and Family Health et al., 2012). The repeated use of biofeedback therapy trains students to overcome these focus issues and works in conjunction with our app’s study aid and scheduling ability (Henriques et al., 2011). Among those surveyed and participants in follow-up focus groups, the Calm Connection app and its use of biofeedback monitoring has generated much interest and documented traction.

ContributorsSilverman, Marcus Samuel (Co-author) / Snow, Kylie (Co-author) / Schacht, Gregory (Co-author) / Byrne, Jared (Thesis director) / Sebold, Brent (Committee member) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
152210-Thumbnail Image.png
Description
The National Research Council developed and published the Framework for K-12 Science Education, a new set of concepts that many states were planning on adopting. Part of this new endeavor included a set of science and engineering crosscutting concepts to be incorporated into science materials and activities, a first in

The National Research Council developed and published the Framework for K-12 Science Education, a new set of concepts that many states were planning on adopting. Part of this new endeavor included a set of science and engineering crosscutting concepts to be incorporated into science materials and activities, a first in science standards history. With the recent development of the Framework came the arduous task of evaluating current lessons for alignment with the new crosscutting concepts. This study took on that task in a small, yet important area of available lessons on the internet. Lessons, to be used by K-12 educators and students, were produced by different organizations and research efforts. This study focused specifically on Earth science lessons as they related to earthquakes. To answer the question as to the extent current and available lessons met the new crosscutting concepts; an evaluation rubric was developed and used to examine teacher and student lessons. Lessons were evaluated on evidence of the science, engineering and application of the engineering for each of the seven crosscutting concepts in the Framework. Each lesson was also evaluated for grade level appropriateness to determine if the lesson was suitable for the intended grade level(s) designated by the lesson. The study demonstrated that the majority of lesson items contained science applications of the crosscutting concepts. However, few contained evidence of engineering applications of the crosscutting concepts. Not only was there lack of evidence for engineering examples of the crosscutting concepts, but a lack of application engineering concepts as well. To evaluate application of the engineering concepts, the activities were examined for characteristics of the engineering design process. Results indicated that student activities were limited in both the nature of the activity and the quantity of lessons that contained activities. The majority of lessons were found to be grade appropriate. This study demonstrated the need to redesign current lessons to incorporate more engineering-specific examples from the crosscutting concepts. Furthermore, it provided evidence the current model of material development was out dated and should be revised to include engineering concepts to meet the needs of the new science standards.
ContributorsSchwab, Patrick (Author) / Baker, Dale (Thesis advisor) / Semken, Steve (Committee member) / Jordan, Shawn (Committee member) / Arizona State University (Publisher)
Created2013
Description

The academic environment has historically been somewhat slow to implement and adopt new technologies. However, developments in video games have created an opportunity for students to learn new skills and topics through nontraditional mediums of education. The disruption caused by the COVID-19 pandemic further highlighted the need for flexible learning

The academic environment has historically been somewhat slow to implement and adopt new technologies. However, developments in video games have created an opportunity for students to learn new skills and topics through nontraditional mediums of education. The disruption caused by the COVID-19 pandemic further highlighted the need for flexible learning opportunities. Joystick Education is our approach to addressing this need. Through online, game-based tutoring and a database of video games with high educational value, Joystick Education creates a learning environment that is effective, fun, and engaging for students. We analyzed popular, mainstream video games for educational content and selected nine games that teach concepts like history, biology, or physics while playing the game. Through promotion on social media, we generated buzz around our website which led to 103 unique visitors over our first month online and two customers requesting to book our tutoring service. We are confident that given more time to grow, Joystick Education can generate profit and become a successful business.

ContributorsBartels, Parker Stephen (Co-author) / Barrong, Tanner (Co-author) / VanLue, Aleczander (Co-author) / Byrne, Jared (Thesis director) / Pierce, John (Committee member) / Department of Management and Entrepreneurship (Contributor, Contributor) / Department of Information Systems (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148502-Thumbnail Image.png
Description

Pelvic Circumferential Compression Devices (PCCDs), an important medical device when caring for patients with pelvic fractures, play a crucial role in the stabilization and reduction of the fracture. During pelvic fracture cases, control of internal bleeding through access to the femoral artery is of utmost importance. Current designs of PCCDs

Pelvic Circumferential Compression Devices (PCCDs), an important medical device when caring for patients with pelvic fractures, play a crucial role in the stabilization and reduction of the fracture. During pelvic fracture cases, control of internal bleeding through access to the femoral artery is of utmost importance. Current designs of PCCDs do not allow vital access to this artery and in attempts to gain access, medical professionals and emergency care providers choose to cut into the PCCDs or place them in suboptimal positions with unknown downstream effects. We researched the effects on surface pressure and the overall pressure distribution created by the PCCDs when they are modified or placed incorrectly on the patient. In addition, we investigated the effects of those misuses on pelvic fracture reduction, a key parameter in stabilizing the patient during critical care. We hypothesized that incorrectly placing or modifying the PCCD will result in increased surface pressure and decreased fracture reduction. Our mannequin studies show that for SAM Sling and T-POD, surface pressure increases if a PCCD is incorrectly placed or modified, in support of our hypothesis. However, opposite results occurred for the Pelvic Binder, where the correctly placed PCCD had higher surface pressure when compared to the incorrectly placed or modified PCCD. Additionally, pressure distribution was significantly affected by the modification of the PCCDs. The cadaver lab measurements show that modifying or incorrectly placing the PCCDs significantly limits their ability to reduce the pelvic fracture. These results suggest that while modifying or incorrectly placing PCCDs allows access to the femoral artery, there are potentially dangerous effects to the patient including increased surface pressures and limited fracture reduction.

ContributorsConley, Ian Patrick (Co-author) / Ryder, Madison (Co-author) / Vernon, Brent (Thesis director) / Bogert, James (Committee member) / Harrington Bioengineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136286-Thumbnail Image.png
Description
This piece aims to discuss the roles of emerging geographies within the context of global supply chains, approaching the conversation with a "systems" view, emphasizing three key facets essential to a holistic and interdisciplinary environmental analysis: -The Implications of Governmental & Economic Activities -Supply Chain Enablement Activities, Risk Mitigation in

This piece aims to discuss the roles of emerging geographies within the context of global supply chains, approaching the conversation with a "systems" view, emphasizing three key facets essential to a holistic and interdisciplinary environmental analysis: -The Implications of Governmental & Economic Activities -Supply Chain Enablement Activities, Risk Mitigation in Emerging Nations -Implications Regarding Sustainability, Corporate Social Responsibility In the appreciation of the interdisciplinary implications that stem from participation in global supply networks, supply chain professionals can position their firms for continued success in the proactive construction of robust and resilient supply chains. Across industries, how will supply networks in emerging geographies continue to evolve? Appreciating the inherent nuances related to the political and economic climate of a region, the extent to which enablement activities must occur, and sustainability/CSR tie-ins will be key to acquire this understanding. This deliverable aims to leverage the work of philosophers, researchers and business personnel as these questions are explored. The author will also introduce a novel method of teaching (IMRS) in the undergraduate business classroom that challenges the students to integrate their prior experiences both in the classroom and in the business world as they learn to craft locally relevant solutions to solve complex global problems.
ContributorsVaney, Rachel Lee (Author) / Maltz, Arnold (Thesis director) / Kellso, James (Committee member) / Barrett, The Honors College (Contributor) / Department of Supply Chain Management (Contributor) / Department of Information Systems (Contributor)
Created2015-05
135836-Thumbnail Image.png
Description
To supplement lectures, various resources are available to students; however, little research has been done to look systematically at which resources studies find most useful and the frequency at which they are used. We have conducted a preliminary study looking at various resources available in an introductory material science course

To supplement lectures, various resources are available to students; however, little research has been done to look systematically at which resources studies find most useful and the frequency at which they are used. We have conducted a preliminary study looking at various resources available in an introductory material science course over four semesters using a custom survey called the Student Resource Value Survey (SRVS). More specifically, the SRVS was administered before each test to determine which resources students use to do well on exams. Additionally, over the course of the semester, which resources students used changed. For instance, study resources for exams including the use of homework problems decreased from 81% to 50%, the utilization of teaching assistant for exam studying increased from 25% to 80%, the use of in class Muddiest Points for exam study increased form 28% to 70%, old exams and quizzes only slightly increased for exam study ranging from 78% to 87%, and the use of drop-in tutoring services provided to students at no charge decreased from 25% to 17%. The data suggest that students thought highly of peer interactions by using those resources more than tutoring centers. To date, no research has been completed looking at courses at the department level or a different discipline. To this end, we adapted the SRVS administered in material science to investigate resource use in thirteen biomedical engineering (BME) courses. Here, we assess the following research question: "From a variety of resources, which do biomedical engineering students feel addresses difficult concept areas, prepares them for examinations, and helps in computer-aided design (CAD) and programming the most and with what frequency?" The resources considered include teaching assistants, classroom notes, prior exams, homework problems, Muddiest Points, office hours, tutoring centers, group study, and the course textbook. Results varied across the four topical areas: exam study, difficult concept areas, CAD software, and math-based programming. When preparing for exams and struggling with a learning concept, the most used and useful resources were: 1) homework problems, 2) class notes and 3) group studying. When working on math-based programming (Matlab and Mathcad) as well as computer-aided design, the most used and useful resources were: 1) group studying, 2) engineering tutoring center, and 3) undergraduate teaching assistants. Concerning learning concepts and exams in the BME department, homework problems and class notes were considered some of the highest-ranking resources for both frequency and usefulness. When comparing to the pilot study in MSE, both BME and MSE students tend to highly favor peer mentors and old exams as a means of studying for exams at the end of the semester1. Because the MSE course only considered exams, we cannot make any comparisons to BME data concerning programming and CAD. This analysis has highlighted potential resources that are universally beneficial, such as the use of peer work, i.e. group studying, engineering tutoring center, and teaching assistants; however, we see differences by both discipline and topical area thereby highlighting the need to determine important resources on a class-by-class basis as well.
ContributorsMalkoc, Aldin (Author) / Ankeny, Casey (Thesis director) / Krause, Stephen (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135688-Thumbnail Image.png
Description
Education is a very sensitive topic when it comes to implementing the right policies. From professionals well-versed in the topic, to the very students who are being taught, feedback for reform is constantly being addressed. Nonetheless, there remains a large gap between the performance of some of the most advanced

Education is a very sensitive topic when it comes to implementing the right policies. From professionals well-versed in the topic, to the very students who are being taught, feedback for reform is constantly being addressed. Nonetheless, there remains a large gap between the performance of some of the most advanced countries in the world and the United States of America. As it stands today, USA is arguably the most technologically advanced country and the outright leader of the free market. For over a century this nation has been exceeding expectations in nearly every industry known to man and aiding the rest of the world in their endeavors for a higher standard of living. Yet, there seems to be something critically wrong with the way a large majority of the younger generation are growing up. How can a country so respected in the world fall so far behind in what is considered the basics of human education: math and science? The Trends in International Mathematics and Science Study (TIMSS) is a series of assessments taken by countries all around the world to determine the strength of their youth's knowledge. Since its inception in 1995, TIMSS has been conducted every four years with an increasing number of participating countries and students each time. In 1999 U.S. eighth-graders placed #19 in the world for mathematics and #18 for science (Appendix Fig. 1). In the years following, and further detailed in the thesis, the U.S. managed to improve the overall performance by a small margin but still remained a leg behind countries like Singapore, Hong Kong, Japan, Russia, and more. Clearly these countries were doing something right as they consistently managed to rank in the top tier. Over the course of this paper we will observe and analyze why and how Singapore has topped the TIMSS list for both math and science nearly every time it has been administered over the last two decades. What is it that they are teaching their youth that enables them to perform exceptionally above the norm? Why is it that we cannot use their techniques as a guideline to increase the capabilities of our future generations? We look to uncover the teaching methods of what is known as Singapore Math and how it has helped students all over the world. By researching current U.S. schools that have already implemented the system and learning about their success stories, we hope to not only educate but also persuade the local school districts on why integrating Singapore Math into their curriculum will lead to the betterment of the lives of thousands of children and the educational threshold of this great nation.
ContributorsKichloo, Parth (Co-author) / Leverenz, Michael (Co-author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Rivera, Alfredo (Committee member) / Department of Management (Contributor) / Department of Marketing (Contributor) / Department of Finance (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136722-Thumbnail Image.png
Description
This thesis, entitled "A Community Perspective on Alcohol Education," was conducted over a ten month period during the Spring 2014 and Fall 2014 semesters, composed by Christopher Stuller and Nicholas Schmitzer. The research involved interviewing twelve professionals from Arizona State University and the City of Tempe to gather a holistic

This thesis, entitled "A Community Perspective on Alcohol Education," was conducted over a ten month period during the Spring 2014 and Fall 2014 semesters, composed by Christopher Stuller and Nicholas Schmitzer. The research involved interviewing twelve professionals from Arizona State University and the City of Tempe to gather a holistic view on alcohol education and alcohol safety as it involves the students at ASU. Upon completion of the interviews, recommendations were made regarding areas of improvement for alcohol education and alcohol safety at Arizona State University. These recommendations range from creating a mandatory alcohol education class to passing a Guardian Angel Law to creating a national network of alcohol education best practices. Through this thesis, the authors hope to prevent future alcohol related injuries, deaths, and tragedies. For the final display of this thesis a website was created. For the ease of reading, all information has been presented in text format.
ContributorsSchmitzer, Nicholas (Co-author) / Stuller, Christopher (Co-author) / Koretz, Lora (Thesis director) / Scott Lynch, Jacquelyn (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor) / School of Accountancy (Contributor) / Department of Supply Chain Management (Contributor)
Created2014-12
137648-Thumbnail Image.png
Description
Camp Hope is an organization dedicated to motivating children in foster care to pursue higher education. In this paper, the organization's founder applies the engineering design process to the problems currently facing Arizona's foster care system. What emerges is Camp Hope (i.e. the "product") and in turn a model by

Camp Hope is an organization dedicated to motivating children in foster care to pursue higher education. In this paper, the organization's founder applies the engineering design process to the problems currently facing Arizona's foster care system. What emerges is Camp Hope (i.e. the "product") and in turn a model by which it can be promulgated throughout the Phoenix metropolitan area and abroad. Prototype camps held abroad in Mexico, and at local group homes in Tempe, Arizona verify the initial user inputs with 68% of campers reporting new academic interests in pre/post camp surveys. Future work includes continued fine-tuning of the model through continued Arizona camps, and longer-term surveys tracking the development of children who participate in the program.
ContributorsSaez, Neil Alexander (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Fitzgerald, Charles A. (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05