Matching Items (6)
Filtering by

Clear all filters

151368-Thumbnail Image.png
Description
In this study, the Arizona State University Mathematics and Science Teaching Fellows 2010 program was analyzed qualitatively from start to finish to determine the impact of the research experience on teachers in the classroom. The sample for the study was the 2010 cohort of eight high school science teachers. Erickson's

In this study, the Arizona State University Mathematics and Science Teaching Fellows 2010 program was analyzed qualitatively from start to finish to determine the impact of the research experience on teachers in the classroom. The sample for the study was the 2010 cohort of eight high school science teachers. Erickson's (1986) interpretive, participant observational fieldwork method was used to report data by means of detailed descriptions of the research experience and classroom implementation. Data was collected from teacher documents, interviews, and observations. The findings revealed various factors that were responsible for an ineffective implementation of the research experience in the classroom such as research experience, curriculum support, availability of resources, and school curriculum. Implications and recommendations for future programs are discussed in the study.
ContributorsSen, Tapati (Author) / Baker, Dale (Thesis advisor) / Culbertson, Robert (Committee member) / Margolis, Eric (Committee member) / Arizona State University (Publisher)
Created2012
150699-Thumbnail Image.png
Description
Historically, African American students have been underrepresented in the fields of science, technology, engineering and mathematics (STEM). If African American students continue to be underrepresented in STEM fields, they will not have access to valuable and high-paying sectors of the economy. Despite the number of African Americans in these fields

Historically, African American students have been underrepresented in the fields of science, technology, engineering and mathematics (STEM). If African American students continue to be underrepresented in STEM fields, they will not have access to valuable and high-paying sectors of the economy. Despite the number of African Americans in these fields being disproportionately low, there are still individuals that persist and complete science degrees. The aim of this study was to investigate African American students who excel in science at Arizona State University and examine the barriers and affordances that they encounter on their journey toward graduation. Qualitative research methods were used to address the research question of the study. My methodology included creating a case study to investigate the experiences of eight African American undergraduate college students at Arizona State University. These four male and four female students were excelling sophomores, juniors, or seniors who were majoring in a science field. Two of the males came from lower socioeconomic status (SES) backgrounds, while two of the males were from higher SES backgrounds. The same applied to the four female participants. My research utilized surveys, semistructured interviews, and student observations to collect data that was analyzed and coded to determine common themes and elements that exist between the students. As a result of the data collection opportunities, peer support and financial support were identified as barriers, while, parental support, financial support, peer support, and teacher support were identified as affordances. In analyzing the data, the results indicated that for the student subjects in this study, sex and SES did not have any relationship with the barriers and affordances experienced.
ContributorsBoyce, Quintin (Author) / Scott, Kimberly (Thesis advisor) / Falls, Deanne (Committee member) / Baker, Dale (Committee member) / Arizona State University (Publisher)
Created2012
150600-Thumbnail Image.png
Description
Students may use the technical engineering terms without knowing what these words mean. This creates a language barrier in engineering that influences student learning. Previous research has been conducted to characterize the difference between colloquial and scientific language. Since this research had not yet been applied explicitly to engineering, conclusions

Students may use the technical engineering terms without knowing what these words mean. This creates a language barrier in engineering that influences student learning. Previous research has been conducted to characterize the difference between colloquial and scientific language. Since this research had not yet been applied explicitly to engineering, conclusions from the area of science education were used instead. Various researchers outlined strategies for helping students acquire scientific language. However, few examined and quantified the relationship it had on student learning. A systemic functional linguistics framework was adopted for this dissertation which is a framework that has not previously been used in engineering education research. This study investigated how engineering language proficiency influenced conceptual understanding of introductory materials science and engineering concepts. To answer the research questions about engineering language proficiency, a convenience sample of forty-one undergraduate students in an introductory materials science and engineering course was used. All data collected was integrated with the course. Measures included the Materials Concept Inventory, a written engineering design task, and group observations. Both systemic functional linguistics and mental models frameworks were utilized to interpret data and guide analysis. A series of regression analyses were conducted to determine if engineering language proficiency predicts group engineering term use, if conceptual understanding predicts group engineering term use, and if conceptual understanding predicts engineering language proficiency. Engineering academic language proficiency was found to be strongly linked to conceptual understanding in the context of introductory materials engineering courses. As the semester progressed, this relationship became even stronger. The more engineering concepts students are expected to learn, the more important it is that they are proficient in engineering language. However, exposure to engineering terms did not influence engineering language proficiency. These results stress the importance of engineering language proficiency for learning, but warn that simply exposing students to engineering terms does not promote engineering language proficiency.
ContributorsKelly, Jacquelyn (Author) / Baker, Dale (Thesis advisor) / Ganesh, Tirupalavanam G. (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2012
151052-Thumbnail Image.png
Description
From the instructional perspective, the scope of "active learning" in the literature is very broad and includes all sorts of classroom activities that engage students with the learning experience. However, classifying all classroom activities as a mode of "active learning" simply ignores the unique cognitive processes associated with the type

From the instructional perspective, the scope of "active learning" in the literature is very broad and includes all sorts of classroom activities that engage students with the learning experience. However, classifying all classroom activities as a mode of "active learning" simply ignores the unique cognitive processes associated with the type of activity. The lack of an extensive framework and taxonomy regarding the relative effectiveness of these "active" activities makes it difficult to compare and contrast the value of conditions in different studies in terms of student learning. Recently, Chi (2009) proposed a framework of differentiated overt learning activities (DOLA) as active, constructive, and interactive based on their underlying cognitive principles and their effectiveness on students' learning outcomes. The motivating question behind this framework is whether some types of engagement affect learning outcomes more than the others. This work evaluated the effectiveness and applicability of the DOLA framework to learning activities for STEM classes. After classification of overt learning activities as being active, constructive or interactive, I then tested the ICAP hypothesis, which states that student learning is more effective in interactive activities than constructive activities, which are more effective than active activities, which are more effective than passive activities. I conducted two studies (Study 1 and Study 2) to determine how and to what degree differentiated activities affected students' learning outcomes. For both studies, I measured students' knowledge of materials science and engineering concepts. Results for Study 1 showed that students scored higher on all post-class quiz questions after participating in interactive and constructive activities than after the active activities. However, student scores on more difficult, inference questions suggested that interactive activities provided significantly deeper learning than either constructive or active activities. Results for Study 2 showed that students' learning, in terms of gain scores, increased systematically from passive to active to constructive to interactive, as predicted by ICAP. All the increases, from condition to condition, were significant. Verbal analysis of the students' dialogue in interactive condition indicated a strong correlation between the co-construction of knowledge and learning gains. When the statements and responses of each student build upon those of the other, both students benefit from the collaboration. Also, the linear combination of discourse moves was significantly related to the adjusted gain scores with a very high correlation coefficient. Specifically, the elaborate type discourse moves were positively correlated with learning outcomes; whereas the accept type moves were negatively correlated with learning outcomes. Analyses of authentic activities in a STEM classroom showed that they fit within the taxonomy of the DOLA framework. The results of the two studies provided evidence to support the predictions of the ICAP hypothesis.
ContributorsMenekşe, Muhsin (Author) / Chi, Michelene T.H. (Thesis advisor) / Baker, Dale (Committee member) / Middleton, James (Committee member) / Arizona State University (Publisher)
Created2012
152210-Thumbnail Image.png
Description
The National Research Council developed and published the Framework for K-12 Science Education, a new set of concepts that many states were planning on adopting. Part of this new endeavor included a set of science and engineering crosscutting concepts to be incorporated into science materials and activities, a first in

The National Research Council developed and published the Framework for K-12 Science Education, a new set of concepts that many states were planning on adopting. Part of this new endeavor included a set of science and engineering crosscutting concepts to be incorporated into science materials and activities, a first in science standards history. With the recent development of the Framework came the arduous task of evaluating current lessons for alignment with the new crosscutting concepts. This study took on that task in a small, yet important area of available lessons on the internet. Lessons, to be used by K-12 educators and students, were produced by different organizations and research efforts. This study focused specifically on Earth science lessons as they related to earthquakes. To answer the question as to the extent current and available lessons met the new crosscutting concepts; an evaluation rubric was developed and used to examine teacher and student lessons. Lessons were evaluated on evidence of the science, engineering and application of the engineering for each of the seven crosscutting concepts in the Framework. Each lesson was also evaluated for grade level appropriateness to determine if the lesson was suitable for the intended grade level(s) designated by the lesson. The study demonstrated that the majority of lesson items contained science applications of the crosscutting concepts. However, few contained evidence of engineering applications of the crosscutting concepts. Not only was there lack of evidence for engineering examples of the crosscutting concepts, but a lack of application engineering concepts as well. To evaluate application of the engineering concepts, the activities were examined for characteristics of the engineering design process. Results indicated that student activities were limited in both the nature of the activity and the quantity of lessons that contained activities. The majority of lessons were found to be grade appropriate. This study demonstrated the need to redesign current lessons to incorporate more engineering-specific examples from the crosscutting concepts. Furthermore, it provided evidence the current model of material development was out dated and should be revised to include engineering concepts to meet the needs of the new science standards.
ContributorsSchwab, Patrick (Author) / Baker, Dale (Thesis advisor) / Semken, Steve (Committee member) / Jordan, Shawn (Committee member) / Arizona State University (Publisher)
Created2013
187598-Thumbnail Image.png
Description
Struggle is a behavior that is often perceived in a negative light in education. Students respond to struggle by avoiding them. Likewise, educators respond by removing obstacles (e.g., heavily scaffolded instruction) or providing assistance prematurely. The ability and opportunity to engage in struggle, specifically productive struggle, is critical in mathematical

Struggle is a behavior that is often perceived in a negative light in education. Students respond to struggle by avoiding them. Likewise, educators respond by removing obstacles (e.g., heavily scaffolded instruction) or providing assistance prematurely. The ability and opportunity to engage in struggle, specifically productive struggle, is critical in mathematical problem solving. Large bodies of research have shown the benefits of productive struggle and even temporary failure. Grounded in the idea that productive struggle is necessary for learning, this qualitative action research aimed to examine the impact of productive failure instructional design (PFID) on mathematics instruction from the perspectives of four middle school teachers in urban communities in California. In the study, teachers created and implemented an 8-week mini unit focusing on problem solving based on PFID. Data were collected and analyzed from multiple sources, which included pre- and post-surveys, teacher reflection journals, interviews, questionnaires, informal meetings, classroom observations, and student pre- and post-tests. Findings from the study indicated that after implementing PFID, teachers had a deeper understanding of the importance of intentionally embedding productive failure in their mathematics instruction, as well as a more positive attitude towards struggle. The study also revealed that teachers viewed PFID as highly beneficial and effective. Lastly, the study showed that six factors in a professional development affected teachers’ willingness to implement PFID in their classroom: flexibility, professional growth, hands-on experience, collaboration, enjoyment, and ease of integration into existing teaching curriculum.
ContributorsRehak, Youlina Thol (Author) / Baker, Dale (Thesis advisor) / Wolf, Leigh (Committee member) / Rodriguez, Jose M. (Committee member) / Arizona State University (Publisher)
Created2023