Matching Items (3)
Filtering by

Clear all filters

152146-Thumbnail Image.png
Description
Human breath is a concoction of thousands of compounds having in it a breath-print of physiological processes in the body. Though breath provides a non-invasive and easy to handle biological fluid, its analysis for clinical diagnosis is not very common. Partly the reason for this absence is unavailability of cost

Human breath is a concoction of thousands of compounds having in it a breath-print of physiological processes in the body. Though breath provides a non-invasive and easy to handle biological fluid, its analysis for clinical diagnosis is not very common. Partly the reason for this absence is unavailability of cost effective and convenient tools for such analysis. Scientific literature is full of novel sensor ideas but it is challenging to develop a working device, which are few. These challenges include trace level detection, presence of hundreds of interfering compounds, excessive humidity, different sampling regulations and personal variability. To meet these challenges as well as deliver a low cost solution, optical sensors based on specific colorimetric chemical reactions on mesoporous membranes have been developed. Sensor hardware utilizing cost effective and ubiquitously available light source (LED) and detector (webcam/photo diodes) has been developed and optimized for sensitive detection. Sample conditioning mouthpiece suitable for portable sensors is developed and integrated. The sensors are capable of communication with mobile phones realizing the idea of m-health for easy personal health monitoring in free living conditions. Nitric oxide and Acetone are chosen as analytes of interest. Nitric oxide levels in the breath correlate with lung inflammation which makes it useful for asthma management. Acetone levels increase during ketosis resulting from fat metabolism in the body. Monitoring breath acetone thus provides useful information to people with type1 diabetes, epileptic children on ketogenic diets and people following fitness plans for weight loss.
ContributorsPrabhakar, Amlendu (Author) / Tao, Nongjian (Thesis advisor) / Forzani, Erica (Committee member) / Lindsay, Stuart (Committee member) / Arizona State University (Publisher)
Created2013
151055-Thumbnail Image.png
Description
Air pollution is one of the biggest challenges people face today. It is closely related to people's health condition. The agencies set up standards to regulate the air pollution. However, many of the pollutants under the regulation level may still result in adverse health effect. On the other hand, it

Air pollution is one of the biggest challenges people face today. It is closely related to people's health condition. The agencies set up standards to regulate the air pollution. However, many of the pollutants under the regulation level may still result in adverse health effect. On the other hand, it is not clear the exact mechanism of air pollutants and its health effect. So it is difficult for the health centers to advise people how to prevent the air pollutant related diseases. It is of vital importance for both the agencies and the health centers to have a better understanding of the air pollution. Based on these needs, it is crucial to establish mobile health sensors for personal exposure assessment. Here, two sensing principles are illustrated: the tuning fork platform and the colorimetric platform. Mobile devices based on these principles have been built. The detections of ozone, NOX, carbon monoxide and formaldehyde have been shown. An integrated device of nitrogen dioxide and carbon monoxide is introduced. Fan is used for sample delivery instead pump and valves to reduce the size, cost and power consumption. Finally, the future work is discussed.
ContributorsWang, Rui (Author) / Tao, Nongjian (Thesis advisor) / Forzani, Erica (Committee member) / Zhang, Yanchao (Committee member) / Karam, Lina (Committee member) / Arizona State University (Publisher)
Created2012
189407-Thumbnail Image.png
Description
Pervaporation is a membrane process suited to complex and highly contaminated wastewaters. Pervaporation desalination is an emerging area of study where the development of high-performance membranes is necessary to propel the field forward. This research demonstrated that sulfonated block polymer membranes (Nexar™)show excellent permeance (water passage normalized by driving force)

Pervaporation is a membrane process suited to complex and highly contaminated wastewaters. Pervaporation desalination is an emerging area of study where the development of high-performance membranes is necessary to propel the field forward. This research demonstrated that sulfonated block polymer membranes (Nexar™)show excellent permeance (water passage normalized by driving force) of as much as 135.5 ± 29 kg m-2 hr-1 bar-1, with salt removal values consistently equal to or greater than 99.5%. Another challenging water management scenario is in spaceflight situations, such as on the International Space Station (ISS). Spaceflight wastewaters are highly complex, with low pH values, and high levels of contaminants. Current processes produce 70% wastewater recovery, necessitating the handling and processing of concentrated brines. Since recoveries of 85% are desired moving forward, further efforts in water recovery are desirable. An area of concern in these ISS water treatment systems is scalant deposition, especially of divalent ions such as calcium species. Zwitterions are molecules with localized positive and negative charges, but an overall neutral charge. Zwitterions have been used to modify the surface of membranes have shown to decrease fouling. Building a copolymer between zwitterions and other polymers, creates zwitterion layer on top of previously studied Nexar™ membranes. This coating demonstrates great promise to combat scaling, as it increases the hydrophilicity of the membrane surface measured via contact angle. The zwitterion membranes experienced reduced scaling, with the greatest difference being between 1617 ± 241 wt% on control membranes, to 317 ± 87 wt% on zwitterion coated membranes in the presence of CaCl2. In treating spaceflight wastewater, these zwitterion membranes are effective at retaining the acid in the feed, going from a pH value of 2 to 7 and reducing the contamination level of the feed, with a removal value of 99.3 ± 0.4%, measured through conductivity. These membranes also perform well in separation processes that do not require extreme vacuum and can be operated passively. By optimizing both membrane material properties and process conditions, achieving increased high levels of water recovery from spaceflight wastewaters is attainable.
ContributorsThomas, Elisabeth (Author) / Lind, Mary Laura (Thesis advisor) / Forzani, Erica (Committee member) / Perreault, Francois (Committee member) / Walker, W. Shane (Committee member) / Williamson, Jill P (Committee member) / Arizona State University (Publisher)
Created2023