Matching Items (5)
Filtering by

Clear all filters

133368-Thumbnail Image.png
Description
Supernovae are vital to supplying necessary elements to forming bodies in our solar systems. This project studies the creation of a subset of these necessary elements, called short-lived radionuclides (SLRs). SLRs are isotopes with relatively short half-lives and can serve as heat sources for forming planetary bodies, and their traces

Supernovae are vital to supplying necessary elements to forming bodies in our solar systems. This project studies the creation of a subset of these necessary elements, called short-lived radionuclides (SLRs). SLRs are isotopes with relatively short half-lives and can serve as heat sources for forming planetary bodies, and their traces can be used to date stellar events. Computational models of asymmetric supernovae provide opportunities to study the effect of explosion geometry on the SLR yields. We are most interested in the production of \iso{Al}{26}, \iso{Fe}{60}, and \iso{Ca}{41}, whose decayed products are found in our own solar system. To study the effect of explosion asymmetries in supernovae, we use TYCHO stellar evolution code, SNSHP smooth particle hydrodynamics code for 3D explosion simulations, Burn code for nucleosythesis post-processing, and Python code written to analyze the output of the post-processing code.
ContributorsJohnson, Charlotte (Author) / Young, Patrick (Thesis director) / Lunardini, Cecilia (Committee member) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135129-Thumbnail Image.png
Description
A working knowledge of mathematics is a vital requirement for introductory university physics courses. However, there is mounting evidence which shows that many incoming introductory physics students do not have the necessary mathematical ability to succeed in physics. The investigation reported in this thesis used preinstruction diagnostics and interviews to

A working knowledge of mathematics is a vital requirement for introductory university physics courses. However, there is mounting evidence which shows that many incoming introductory physics students do not have the necessary mathematical ability to succeed in physics. The investigation reported in this thesis used preinstruction diagnostics and interviews to examine this problem in depth. It was found that in some cases, over 75% of students could not solve the most basic mathematics problems. We asked questions involving right triangles, vector addition, vector direction, systems of equations, and arithmetic, to give a few examples. The correct response rates were typically between 25% and 75%, which is worrying, because these problems are far simpler than the typical problem encountered in an introductory quantitative physics course. This thesis uncovered a few common problem solving strategies that were not particularly effective. When solving trigonometry problems, 13% of students wrote down the mnemonic "SOH CAH TOA," but a chi-squared test revealed that this was not a statistically significant factor in getting the correct answer, and was actually detrimental in certain situations. Also, about 50% of students used a tip-to-tail method to add vectors. But there is evidence to suggest that this method is not as effective as using components. There are also a number of problem solving strategies that successful students use to solve mathematics problems. Using the components of a vector increases student success when adding vectors and examining their direction. Preliminary evidence also suggests that repetitive trigonometry practice may be the best way to improve student performance on trigonometry problems. In addition, teaching students to use a wide variety of algebraic techniques like the distributive property may help them from getting stuck when working through problems. Finally, evidence suggests that checking work could eliminate up to a third of student errors.
ContributorsJones, Matthew Isaiah (Author) / Meltzer, David (Thesis director) / Peng, Xihong (Committee member) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description
Computer simulations are gaining recognition as educational tools, but in general there is still a line dividing a simulation from a game. Yet as many recent and successful video games heavily involve simulations (SimCity comes to mind), there is not only the growing question of whether games can be used

Computer simulations are gaining recognition as educational tools, but in general there is still a line dividing a simulation from a game. Yet as many recent and successful video games heavily involve simulations (SimCity comes to mind), there is not only the growing question of whether games can be used for educational purposes, but also of how a game might qualify as educational. Endemic: The Agent is a project that tries to bridge the gap between educational simulations and educational games. This paper outlines the creation of the project and the characteristics that make it an educational tool, a simulation, and a game.
ContributorsFish, Derek Austin (Author) / Karr, Timothy (Thesis director) / Marcus, Andrew (Committee member) / Jones, Donald (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2013-05
148168-Thumbnail Image.png
Description

The COVID-19 pandemic has resulted in preventative measures and has led to extensive changes in lifestyle for the vast majority of the American population. As the pandemic progresses, a growing amount of evidence shows that minority groups, such as the Deaf community, are often disproportionately and uniquely affected. Deaf

The COVID-19 pandemic has resulted in preventative measures and has led to extensive changes in lifestyle for the vast majority of the American population. As the pandemic progresses, a growing amount of evidence shows that minority groups, such as the Deaf community, are often disproportionately and uniquely affected. Deaf people are directly affected in their ability to personally socialize and continue with daily routines. More specifically, this can constitute their ability to meet new people, connect with friends/family, and to perform in their work or learning environment. It also may result in further mental health changes and an increased reliance on technology. The impact of COVID-19 on the Deaf community in clinical settings must also be considered. This includes changes in policies for in-person interpreters and a rise in telehealth. Often, these effects can be representative of the pre-existing low health literacy, frequency of miscommunication, poor treatment, and the inconvenience felt by Deaf people when trying to access healthcare. Ultimately, these effects on the Deaf community must be taken into account when attempting to create a full picture of the societal shift caused by COVID-19.

ContributorsAsuncion, David Leonard Esquiera (Co-author) / Dubey, Shreya (Co-author) / Patterson, Lindsey (Thesis director) / Lee, Lindsay (Committee member) / Harrington Bioengineering Program (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
130860-Thumbnail Image.png
Description

We present the isotope yields of two post-explosion, three-dimensional 15 M_sol core-collapse supernova models, 15S and 15A, and compare them to the carbon, nitrogen, silicon, aluminum, sulfur, calcium, titanium, iron, and nickel isotopic compositions of presolar SiC stardust. We find that material from the interior of a core-collapse supernova can

We present the isotope yields of two post-explosion, three-dimensional 15 M_sol core-collapse supernova models, 15S and 15A, and compare them to the carbon, nitrogen, silicon, aluminum, sulfur, calcium, titanium, iron, and nickel isotopic compositions of presolar SiC stardust. We find that material from the interior of a core-collapse supernova can form a rare subset of SiC stardust, called SiC D grains, characterized by enrichments of the isotopes 13C and 15N. The innermost material of these core-collapse supernovae is operating in the neutrino-driven regime and undergoes rapid proton capture early in the explosion, providing these isotopes which are not present in such large abundances in other stardust grains of supernova origin.

ContributorsSchulte, Jack (Author) / Bose, Maitrayee (Thesis director) / Foy, Joseph (Committee member) / School of Earth and Space Exploration (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05