Matching Items (3)
Filtering by

Clear all filters

149091-Thumbnail Image.png
Description

Geology and its tangential studies, collectively known and referred to in this thesis as geosciences, have been paramount to the transformation and advancement of society, fundamentally changing the way we view, interact and live with the surrounding natural and built environment. It is important to recognize the value and importance

Geology and its tangential studies, collectively known and referred to in this thesis as geosciences, have been paramount to the transformation and advancement of society, fundamentally changing the way we view, interact and live with the surrounding natural and built environment. It is important to recognize the value and importance of this interdisciplinary scientific field while reconciling its ties to imperial and colonizing extractive systems which have led to harmful and invasive endeavors. This intersection among geosciences, (environmental) justice studies, and decolonization is intended to promote inclusive pedagogical models through just and equitable methodologies and frameworks as to prevent further injustices and promote recognition and healing of old wounds. By utilizing decolonial frameworks and highlighting the voices of peoples from colonized and exploited landscapes, this annotated syllabus tackles the issues previously described while proposing solutions involving place-based education and the recentering of land within geoscience pedagogical models. (abstract)

ContributorsReed, Cameron E (Author) / Richter, Jennifer (Thesis director) / Semken, Steven (Committee member) / School of Earth and Space Exploration (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
135035-Thumbnail Image.png
Description
For the geoscience community to continue to grow, students need to be attracted to the field. Here we examine the Incorporated Research Institutions for Seismology (IRIS) Research Experience for Undergraduates (REU) program to understand how the participants' experiences' affects their interest in geoscience and educational and career goals. Eleven interns

For the geoscience community to continue to grow, students need to be attracted to the field. Here we examine the Incorporated Research Institutions for Seismology (IRIS) Research Experience for Undergraduates (REU) program to understand how the participants' experiences' affects their interest in geoscience and educational and career goals. Eleven interns over two years (2013-2014) were interviewed prior to the start of their internship, after their internship, and after presenting their research at the American Geophysical Union annual meeting. This internship program is of particular interest because many of the interns come into the REU with non-geoscience or geophysics backgrounds (e.g., physics, mathematics, chemistry, engineering). Both a priori and emergent codes are used to convert interview transcripts into quantitative data, which is analyzed alongside demographic information to understand how the REU influences their decisions. Increases in self-efficacy and exposure to multiple facets of geoscience research are expressed as primary factors that help shape their future educational and career goals. Other factors such as networking opportunities and connections during the REU also can play a role in their decision. Overall, REU participants who identified as geosciences majors solidified their decisions to pursue a career in geosciences, while participants who identified as non-geosciences majors were inclined to change majors, pursue geosciences in graduate school, or explore other job opportunities in the geosciences.
ContributorsGossard, Trey Marshall (Author) / Semken, Steven (Thesis director) / Garnero, Edward (Committee member) / Reynolds, Stephen (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
130875-Thumbnail Image.png
Description
This project produced a dual-medium (traditional screen & virtual reality) virtual environment of Barnhardt Canyon, in Payson, Arizona. The project showcases two different approaches to developing a virtual environment with both being centered by 360 degree content. The virtual environment allows a user to explore the area in a much

This project produced a dual-medium (traditional screen & virtual reality) virtual environment of Barnhardt Canyon, in Payson, Arizona. The project showcases two different approaches to developing a virtual environment with both being centered by 360 degree content. The virtual environment allows a user to explore the area in a much more immersive way than offered by traditional media. Future uses of the project could include research on the educational efficacy of virtual reality content, or the project could be used as a teaching tool in geoscience classes.
ContributorsRuberto, James Richard (Author) / Semken, Steven (Thesis director) / Reynolds, Stephen (Committee member) / Proctor, Sian (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-12