Matching Items (86)
Filtering by

Clear all filters

147809-Thumbnail Image.png
Description

Though about 75 percent of American waste is recyclable, only 30 percent of it is actually recycled and less than ten percent of plastics disposed of in the United States in 2015 were recycled. A statistic like this demonstrates the immense need to increase recycling rates in order to move

Though about 75 percent of American waste is recyclable, only 30 percent of it is actually recycled and less than ten percent of plastics disposed of in the United States in 2015 were recycled. A statistic like this demonstrates the immense need to increase recycling rates in order to move towards cultivating a circular economy and benefiting the environment. With Arizona State University’s (ASU) extensive population of on-campus students and faculty, our team was determined to create a solution that would increase recycling rates. After conducting initial market research, our team incentives or education. We conducted market research through student surveys to determine the level of knowledge of our target audience and barriers to entry for local recycling and composting resources. Further, we gained insight into the medium of recycling and sustainability programs they would be interested in participating in. Overall, the results of our surveys demonstrated that a majority of students were interested in participating in these programs, if they were not already involved, and most students on-campus already had access to these resources. Despite having access to these sustainable practices, we identified a knowledge gap between students and their information on how to properly execute sustainable practices such as composting and recycling. In order to address this audience, our team created Circulearning, an educational program that aims to bridge the gap of knowledge and address immediate concerns regarding circular economy topics. By engaging audiences through our quick, accessible educational modules and teaching them about circular practices, we aim to inspire everyone to implement these practices into their own lives. Though our team began the initiative with a focus on implementing these practices solely to ASU campus, we decided to expand our target audience to implement educational programs at all levels after discovering the interest and need for this resource in our community. Our team is extremely excited that our Circulearning educational modules have been shared with a broad audience including students at Mesa Skyline High School, ASU students, and additional connections outside of ASU. With Circulearning, we will educate and inspire people of all ages to live more sustainably and better the environment in which we live.

ContributorsChakravarti, Renuka (Co-author) / Tam, Monet (Co-author) / Carr-Taylor, Kathleen (Co-author) / Byrne, Jared (Thesis director) / Marseille, Alicia (Committee member) / Jordan, Amanda (Committee member) / School of Art (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148238-Thumbnail Image.png
Description

Dreadnought is a free-to-play multiplayer flight simulation in which two teams of 8 players each compete against one another to complete an objective. Each player controls a large-scale spaceship, various aspects of which can be customized to improve a player’s performance in a game. One such aspect is Officer Briefings,

Dreadnought is a free-to-play multiplayer flight simulation in which two teams of 8 players each compete against one another to complete an objective. Each player controls a large-scale spaceship, various aspects of which can be customized to improve a player’s performance in a game. One such aspect is Officer Briefings, which are passive abilities that grant ships additional capabilities. Two of these Briefings, known as Retaliator and Get My Good Side, have strong synergy when used together, which has led to the Dreadnought community’s claiming that the Briefings are too powerful and should be rebalanced to be more in line with the power levels of other Briefings. This study collected gameplay data with and without the use of these specific Officer Briefings to determine the precise impact on gameplay. Linear correlation matrices and inference on two means were used to determine performance impact. It was found that, although these Officer Briefings do improve an individual player’s performance in a game, they do not have a consistent impact on the player’s team performance, and that these Officer Briefings are therefore not in need of rebalancing.

ContributorsJacobs, Max I. (Author) / Schneider, Laurence (Thesis director) / Tran, Samantha (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The academic environment has historically been somewhat slow to implement and adopt new technologies. However, developments in video games have created an opportunity for students to learn new skills and topics through nontraditional mediums of education. The disruption caused by the COVID-19 pandemic further highlighted the need for flexible learning

The academic environment has historically been somewhat slow to implement and adopt new technologies. However, developments in video games have created an opportunity for students to learn new skills and topics through nontraditional mediums of education. The disruption caused by the COVID-19 pandemic further highlighted the need for flexible learning opportunities. Joystick Education is our approach to addressing this need. Through online, game-based tutoring and a database of video games with high educational value, Joystick Education creates a learning environment that is effective, fun, and engaging for students. We analyzed popular, mainstream video games for educational content and selected nine games that teach concepts like history, biology, or physics while playing the game. Through promotion on social media, we generated buzz around our website which led to 103 unique visitors over our first month online and two customers requesting to book our tutoring service. We are confident that given more time to grow, Joystick Education can generate profit and become a successful business.

ContributorsBartels, Parker Stephen (Co-author) / Barrong, Tanner (Co-author) / VanLue, Aleczander (Co-author) / Byrne, Jared (Thesis director) / Pierce, John (Committee member) / Department of Management and Entrepreneurship (Contributor, Contributor) / Department of Information Systems (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136550-Thumbnail Image.png
Description
The NFL is one of largest and most influential industries in the world. In America there are few companies that have a stronger hold on the American culture and create such a phenomena from year to year. In this project aimed to develop a strategy that helps an NFL team

The NFL is one of largest and most influential industries in the world. In America there are few companies that have a stronger hold on the American culture and create such a phenomena from year to year. In this project aimed to develop a strategy that helps an NFL team be as successful as possible by defining which positions are most important to a team's success. Data from fifteen years of NFL games was collected and information on every player in the league was analyzed. First there needed to be a benchmark which describes a team as being average and then every player in the NFL must be compared to that average. Based on properties of linear regression using ordinary least squares this project aims to define such a model that shows each position's importance. Finally, once such a model had been established then the focus turned to the NFL draft in which the goal was to find a strategy of where each position needs to be drafted so that it is most likely to give the best payoff based on the results of the regression in part one.
ContributorsBalzer, Kevin Ryan (Author) / Goegan, Brian (Thesis director) / Dassanayake, Maduranga (Committee member) / Barrett, The Honors College (Contributor) / Economics Program in CLAS (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
135574-Thumbnail Image.png
Description
The purpose of our research was to develop recommendations and/or strategies for Company A's data center group in the context of the server CPU chip industry. We used data collected from the International Data Corporation (IDC) that was provided by our team coaches, and data that is accessible on the

The purpose of our research was to develop recommendations and/or strategies for Company A's data center group in the context of the server CPU chip industry. We used data collected from the International Data Corporation (IDC) that was provided by our team coaches, and data that is accessible on the internet. As the server CPU industry expands and transitions to cloud computing, Company A's Data Center Group will need to expand their server CPU chip product mix to meet new demands of the cloud industry and to maintain high market share. Company A boasts leading performance with their x86 server chips and 95% market segment share. The cloud industry is dominated by seven companies Company A calls "The Super 7." These seven companies include: Amazon, Google, Microsoft, Facebook, Alibaba, Tencent, and Baidu. In the long run, the growing market share of the Super 7 could give them substantial buying power over Company A, which could lead to discounts and margin compression for Company A's main growth engine. Additionally, in the long-run, the substantial growth of the Super 7 could fuel the development of their own design teams and work towards making their own server chips internally, which would be detrimental to Company A's data center revenue. We first researched the server industry and key terminology relevant to our project. We narrowed our scope by focusing most on the cloud computing aspect of the server industry. We then researched what Company A has already been doing in the context of cloud computing and what they are currently doing to address the problem. Next, using our market analysis, we identified key areas we think Company A's data center group should focus on. Using the information available to us, we developed our strategies and recommendations that we think will help Company A's Data Center Group position themselves well in an extremely fast growing cloud computing industry.
ContributorsJurgenson, Alex (Co-author) / Nguyen, Duy (Co-author) / Kolder, Sean (Co-author) / Wang, Chenxi (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / Department of Finance (Contributor) / Department of Management (Contributor) / Department of Information Systems (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Accountancy (Contributor) / WPC Graduate Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135828-Thumbnail Image.png
Description
"Improving Life Outcomes for Children in Arizona: Educational Social Impact Bond" is a creative project that is structured as a pitch to the Arizona Department of Education to consider social impact bonds as a way to fund pilot education programs. The pitch begins with a brief overview of the umbrella

"Improving Life Outcomes for Children in Arizona: Educational Social Impact Bond" is a creative project that is structured as a pitch to the Arizona Department of Education to consider social impact bonds as a way to fund pilot education programs. The pitch begins with a brief overview of the umbrella of impact investing, and then a focus on social impact bonds, an area of impact investing. A profile of Arizona's current educational rankings along with statistics are then presented, highlighting the need for an educational social impact bond to help increase achievement. The pitch then starts to focus particularly on high school drop outs and how by funding early childhood education the chances of a child graduating high school increase. An overview of existing early education social impact bonds that are enacted are then presented, followed by a possible structure for an early education social impact bond in Arizona. An analysis of the possible lifetime cost savings of investing in early childhood education are then presented, that are as a result of decreasing the amount of high school drop outs. Lastly, is a brief side-by-side comparison of the Arizona structure to the precedent social impact bonds.
ContributorsRodriguez, Karina (Author) / Simonson, Mark (Thesis director) / Trujillo, Gary (Committee member) / Department of Finance (Contributor) / School of Accountancy (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135654-Thumbnail Image.png
Description
Company X has developed RealSenseTM technology, a depth sensing camera that provides machines the ability to capture three-dimensional spaces along with motion within these spaces. The goal of RealSense was to give machines human-like senses, such as knowing how far away objects are and perceiving the surrounding environment. The key

Company X has developed RealSenseTM technology, a depth sensing camera that provides machines the ability to capture three-dimensional spaces along with motion within these spaces. The goal of RealSense was to give machines human-like senses, such as knowing how far away objects are and perceiving the surrounding environment. The key issue for Company X is how to commercialize RealSense's depth recognition capabilities. This thesis addresses the problem by examining which markets to address and how to monetize this technology. The first part of the analysis identified potential markets for RealSense. This was achieved by evaluating current markets that could benefit from the camera's gesture recognition, 3D scanning, and depth sensing abilities. After identifying seven industries where RealSense could add value, a model of the available, addressable, and obtainable market sizes was developed for each segment. Key competitors and market dynamics were used to estimate the portion of the market that Company X could capture. These models provided a forecast of the discounted gross profits that could be earned over the next five years. These forecasted gross profits, combined with an examination of the competitive landscape and synergistic opportunities, resulted in the selection of the three segments thought to be most profitable to Company X. These segments are smart home, consumer drones, and automotive. The final part of the analysis investigated entrance strategies. Company X's competitive advantages in each space were found by examining the competition, both for the RealSense camera in general and other technologies specific to each industry. Finally, ideas about ways to monetize RealSense were developed by exploring various revenue models and channels.
ContributorsDunn, Nicole (Co-author) / Boudreau, Thomas (Co-author) / Kinzy, Chris (Co-author) / Radigan, Thomas (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / WPC Graduate Programs (Contributor) / Department of Psychology (Contributor) / Department of Finance (Contributor) / School of Accountancy (Contributor) / Department of Economics (Contributor) / School of Mathematical and Statistical Science (Contributor) / W. P. Carey School of Business (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135688-Thumbnail Image.png
Description
Education is a very sensitive topic when it comes to implementing the right policies. From professionals well-versed in the topic, to the very students who are being taught, feedback for reform is constantly being addressed. Nonetheless, there remains a large gap between the performance of some of the most advanced

Education is a very sensitive topic when it comes to implementing the right policies. From professionals well-versed in the topic, to the very students who are being taught, feedback for reform is constantly being addressed. Nonetheless, there remains a large gap between the performance of some of the most advanced countries in the world and the United States of America. As it stands today, USA is arguably the most technologically advanced country and the outright leader of the free market. For over a century this nation has been exceeding expectations in nearly every industry known to man and aiding the rest of the world in their endeavors for a higher standard of living. Yet, there seems to be something critically wrong with the way a large majority of the younger generation are growing up. How can a country so respected in the world fall so far behind in what is considered the basics of human education: math and science? The Trends in International Mathematics and Science Study (TIMSS) is a series of assessments taken by countries all around the world to determine the strength of their youth's knowledge. Since its inception in 1995, TIMSS has been conducted every four years with an increasing number of participating countries and students each time. In 1999 U.S. eighth-graders placed #19 in the world for mathematics and #18 for science (Appendix Fig. 1). In the years following, and further detailed in the thesis, the U.S. managed to improve the overall performance by a small margin but still remained a leg behind countries like Singapore, Hong Kong, Japan, Russia, and more. Clearly these countries were doing something right as they consistently managed to rank in the top tier. Over the course of this paper we will observe and analyze why and how Singapore has topped the TIMSS list for both math and science nearly every time it has been administered over the last two decades. What is it that they are teaching their youth that enables them to perform exceptionally above the norm? Why is it that we cannot use their techniques as a guideline to increase the capabilities of our future generations? We look to uncover the teaching methods of what is known as Singapore Math and how it has helped students all over the world. By researching current U.S. schools that have already implemented the system and learning about their success stories, we hope to not only educate but also persuade the local school districts on why integrating Singapore Math into their curriculum will lead to the betterment of the lives of thousands of children and the educational threshold of this great nation.
ContributorsKichloo, Parth (Co-author) / Leverenz, Michael (Co-author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Rivera, Alfredo (Committee member) / Department of Management (Contributor) / Department of Marketing (Contributor) / Department of Finance (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
DescriptionIn this project, we aim to examine the methods used to obtain U.S. mortality rates, as well as the changes in the mortality rate between subgroups of interest within our population due to various diseases.
ContributorsClermont, Nicholas Charles (Author) / Boggess, May (Thesis director) / Kamarianakis, Ioannis (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
136587-Thumbnail Image.png
Description
In the words of W. Edwards Deming, "the central problem in management and in leadership is failure to understand the information in variation." While many quality management programs propose the institution of technical training in advanced statistical methods, this paper proposes that by understanding the fundamental information behind statistical theory,

In the words of W. Edwards Deming, "the central problem in management and in leadership is failure to understand the information in variation." While many quality management programs propose the institution of technical training in advanced statistical methods, this paper proposes that by understanding the fundamental information behind statistical theory, and by minimizing bias and variance while fully utilizing the available information about the system at hand, one can make valuable, accurate predictions about the future. Combining this knowledge with the work of quality gurus W. E. Deming, Eliyahu Goldratt, and Dean Kashiwagi, a framework for making valuable predictions for continuous improvement is made. After this information is synthesized, it is concluded that the best way to make accurate, informative predictions about the future is to "balance the present and future," seeing the future through the lens of the present and thus minimizing bias, variance, and risk.
ContributorsSynodis, Nicholas Dahn (Author) / Kashiwagi, Dean (Thesis director, Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05