Matching Items (8)
Filtering by

Clear all filters

133914-Thumbnail Image.png
Description
This paper describes the research done to quantify the relationship between external air temperature and energy consumption and internal air temperature and energy consumption. The study was conducted on a LEED Gold certified building, College Avenue Commons, located on Arizona State University's Tempe campus. It includes information on the background

This paper describes the research done to quantify the relationship between external air temperature and energy consumption and internal air temperature and energy consumption. The study was conducted on a LEED Gold certified building, College Avenue Commons, located on Arizona State University's Tempe campus. It includes information on the background of previous studies in the area, some that agree with the research hypotheses and some that take a different path. Real-time data was collected hourly for energy consumption and external air temperature. Intermittent internal air temperature was collected by undergraduate researcher, Charles Banke. Regression analysis was used to prove two research hypotheses. The authors found no correlation between external air temperature and energy consumption, nor did they find a relationship between internal air temperature and energy consumption. This paper also includes recommendations for future work to improve the study.
ContributorsBanke, Charles Michael (Author) / Chong, Oswald (Thesis director) / Parrish, Kristen (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135209-Thumbnail Image.png
Description
Building construction, design and maintenance is a sector of engineering where improved efficiency will have immense impacts on resource consumption and environmental health. This research closely examines the Leadership in Environment and Energy Design (LEED) rating system and the International Green Construction Code (IgCC). The IgCC is a model code,

Building construction, design and maintenance is a sector of engineering where improved efficiency will have immense impacts on resource consumption and environmental health. This research closely examines the Leadership in Environment and Energy Design (LEED) rating system and the International Green Construction Code (IgCC). The IgCC is a model code, written with the same structure as many building codes. It is a standard that can be enforced if a city's government decides to adopt it. When IgCC is enforced, the buildings either meet all of the requirements set forth in the document or it fails to meet the code standards. The LEED Rating System, on the other hand, is not a building code. LEED certified buildings are built according to the standards of their local jurisdiction and in addition to that, building owners can chose to pursue a LEED certification. This is a rating system that awards points based on the sustainable measures achieved by a building. A comparison of these green building systems highlights their accomplishments in terms of reduced electricity usage, usage of low-impact materials, indoor environmental quality and other innovative features. It was determined that in general IgCC is more holistic, stringent approach to green building. At the same time the LEED rating system a wider variety of green building options. In addition, building data from LEED certified buildings was complied and analyzed to understand important trends. Both of these methods are progressing towards low-impact, efficient infrastructure and a side-by-side comparison, as done in this research, shed light on the strengths and weaknesses of each method, allowing for future improvements.
ContributorsCampbell, Kaleigh Ruth (Author) / Chong, Oswald (Thesis director) / Parrish, Kristen (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137487-Thumbnail Image.png
Description
The current Enterprise Requirements and Acquisition Model (ERAM), a discrete event simulation of the major tasks and decisions within the DoD acquisition system, identifies several what-if intervention strategies to improve program completion time. However, processes that contribute to the program acquisition completion time were not explicitly identified in the simulation

The current Enterprise Requirements and Acquisition Model (ERAM), a discrete event simulation of the major tasks and decisions within the DoD acquisition system, identifies several what-if intervention strategies to improve program completion time. However, processes that contribute to the program acquisition completion time were not explicitly identified in the simulation study. This research seeks to determine the acquisition processes that contribute significantly to total simulated program time in the acquisition system for all programs reaching Milestone C. Specifically, this research examines the effect of increased scope management, technology maturity, and decreased variation and mean process times in post-Design Readiness Review contractor activities by performing additional simulation analyses. Potential policies are formulated from the results to further improve program acquisition completion time.
ContributorsWorger, Danielle Marie (Author) / Wu, Teresa (Thesis director) / Shunk, Dan (Committee member) / Wirthlin, J. Robert (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2013-05
134430-Thumbnail Image.png
Description
Abstract Chess has been a common research topic for expert-novice studies and thus for learning science as a whole because of its limited framework and longevity as a game. One factor is that chess studies are good at measuring how expert chess players use their memory and skills to approach

Abstract Chess has been a common research topic for expert-novice studies and thus for learning science as a whole because of its limited framework and longevity as a game. One factor is that chess studies are good at measuring how expert chess players use their memory and skills to approach a new chessboard con�guration. Studies have shown that chess skill is based on memory, speci�cally, "chunks" of chess piece positions that have been previously encountered by players. However, debate exists concerning how these chunks are constructed in players' memory. These chunks could be constructed by proximity of pieces on the chessboard as well as their precise location or constructed through attack-defense relations. The primary objective of this study is to support which one is more in line with chess players' actual chess abilities based off their memory, proximity or attack/defense. This study replicates and extends an experiment conducted by McGregor and Howe (2002), which explored the argument that pieces are primed more by attack and defense relations than by proximity. Like their study, the present study examined novice and expert chess players' response times for correct and error responses by showing slides of game configurations. In addition to these metrics, the present study also incorporated an eye-tracker to measure visual attention and EEG to measure affective and cognitive states. They were added to allow the comparison of subtle and unconscious behaviors of both novices and expert chess players. Overall, most McGregor and Howe's (2002) results were replicated supporting their theory on chess expertise. This included statistically significance for skill in the error rates with the mean error rates on the piece recognition tests were 70.1% for novices and 87.9% for experts, as well as significance for the two-way interaction for relatedness and proximity with error rates of 22.4% for unrelated/far, 18.8% for related/far, 15.8% for unrelated
ear, and 29.3% for related
ear. Unfortunately, there were no statistically significance for any of the response time effects, which McGregor and Howe found for the interaction between skill and proximity. Despite eye-tracking and EEG data not either support nor confirm McGregor and Howe's theory on how chess players memorize chessboard configurations, these metrics did help build a secondary theory on how novices typically rely on proximity to approach chess and new visual problems in general. This was exemplified by the statistically significant results for short-term excitement for the two-way interaction of skill and proximity, where the largest short-term excitement score was between novices on near proximity slides. This may indicate that novices, because they may lean toward using proximity to try to recall these pieces, experience a short burst of excitement when the pieces are close to each other because they are more likely to recall these configurations.
ContributorsSeto, Christian Paul (Author) / Atkinson, Robert (Thesis director) / Runger, George (Committee member) / Industrial, Systems (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
In this study, the implementation of educational technology and its effect on learning and user experience is measured. A demographic survey, pretest/posttest, and educational experience survey was used to collect data on the control and experimental groups. The experimental group was subjected to different learning material than the control grou

In this study, the implementation of educational technology and its effect on learning and user experience is measured. A demographic survey, pretest/posttest, and educational experience survey was used to collect data on the control and experimental groups. The experimental group was subjected to different learning material than the control group with the use of the Elements 4D mobile application by Daqri to learn basic chemical elements and compounds. The control group learning material provided all the exact information as the application, but in the 2D form of a printed packet. It was expected the experimental group would outperform the control group and have a more enjoyable experience and higher performance. After data analysis, it was concluded that the control group outperformed the experimental group on performance and both groups has similar experiences in contradiction to the hypothesis. Once the factors that contribute to the limitations of different study duration, learning the application beforehand, and only-memorization questions are addressed, the study can be conducted again. Application improvements may also alter the future results of the study and hopefully lead to full implementation into a curriculum.
ContributorsApplegate, Garrett Charles (Author) / Atkinson, Robert (Thesis director) / Chavez-Echeagaray, Maria Elena (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134662-Thumbnail Image.png
Description
The overall energy consumption around the United States has not been reduced even with the advancement of technology over the past decades. Deficiencies exist between design and actual energy performances. Energy Infrastructure Systems (EIS) are impacted when the amount of energy production cannot be accurately and efficiently forecasted. Inaccurate engineering

The overall energy consumption around the United States has not been reduced even with the advancement of technology over the past decades. Deficiencies exist between design and actual energy performances. Energy Infrastructure Systems (EIS) are impacted when the amount of energy production cannot be accurately and efficiently forecasted. Inaccurate engineering assumptions can result when there is a lack of understanding on how energy systems can operate in real-world applications. Energy systems are complex, which results in unknown system behaviors, due to an unknown structural system model. Currently, there exists a lack of data mining techniques in reverse engineering, which are needed to develop efficient structural system models. In this project, a new type of reverse engineering algorithm has been applied to a year's worth of energy data collected from an ASU research building called MacroTechnology Works, to identify the structural system model. Developing and understanding structural system models is the first step in creating accurate predictive analytics for energy production. The associative network of the building's data will be highlighted to accurately depict the structural model. This structural model will enhance energy infrastructure systems' energy efficiency, reduce energy waste, and narrow the gaps between energy infrastructure design, planning, operation and management (DPOM).
ContributorsCamarena, Raquel Jimenez (Author) / Chong, Oswald (Thesis director) / Ye, Nong (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134959-Thumbnail Image.png
Description
To compete with fossil fuel electricity generation, there is a need for higher efficiency solar cells to produce renewable energy. Currently, this is the best way to lower generation costs and the price of energy [1]. The goal of this Barrett Honors Thesis is to design an optical coating model

To compete with fossil fuel electricity generation, there is a need for higher efficiency solar cells to produce renewable energy. Currently, this is the best way to lower generation costs and the price of energy [1]. The goal of this Barrett Honors Thesis is to design an optical coating model that has five or fewer layers (with varying thickness and refractive index, within the above range) and that has the maximum reflectance possible between 950 and 1200 nanometers for normally incident light. Manipulating silicon monolayers to become efficient inversion layers to use in solar cells aligns with the Ira. A Fulton Schools of Engineering research themes of energy and sustainability [2]. Silicon monolayers could be specifically designed for different doping substrates. These substrates could range from common-used materials such as boron and phosphorus, to rare-earth doped zinc oxides or even fullerene blends. Exploring how the doping material, and in what quantity, affects solar cell energy output could revolutionize the current production methods and commercial market. If solar cells can be manufactured more economically, yet still retain high efficiency rates, then more people will have access to alternate, "green" energy that does not deplete nonrenewable resources.
ContributorsSanford, Kari Paige (Author) / Holman, Zachary (Thesis director) / Weigand, William (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
155683-Thumbnail Image.png
Description
The solar energy sector has been growing rapidly over the past decade. Growth in renewable electricity generation using photovoltaic (PV) systems is accompanied by an increased awareness of the fault conditions developing during the operational lifetime of these systems. While the annual energy losses caused by faults in PV systems

The solar energy sector has been growing rapidly over the past decade. Growth in renewable electricity generation using photovoltaic (PV) systems is accompanied by an increased awareness of the fault conditions developing during the operational lifetime of these systems. While the annual energy losses caused by faults in PV systems could reach up to 18.9% of their total capacity, emerging technologies and models are driving for greater efficiency to assure the reliability of a product under its actual application. The objectives of this dissertation consist of (1) reviewing the state of the art and practice of prognostics and health management for the Direct Current (DC) side of photovoltaic systems; (2) assessing the corrosion of the driven posts supporting PV structures in utility scale plants; and (3) assessing the probabilistic risk associated with the failure of polymeric materials that are used in tracker and fixed tilt systems.

As photovoltaic systems age under relatively harsh and changing environmental conditions, several potential fault conditions can develop during the operational lifetime including corrosion of supporting structures and failures of polymeric materials. The ability to accurately predict the remaining useful life of photovoltaic systems is critical for plants ‘continuous operation. This research contributes to the body of knowledge of PV systems reliability by: (1) developing a meta-model of the expected service life of mounting structures; (2) creating decision frameworks and tools to support practitioners in mitigating risks; (3) and supporting material selection for fielded and future photovoltaic systems. The newly developed frameworks were validated by a global solar company.
ContributorsChokor, Abbas (Author) / El Asmar, Mounir (Thesis advisor) / Chong, Oswald (Committee member) / Ernzen, James (Committee member) / Arizona State University (Publisher)
Created2017