Matching Items (18)
Filtering by

Clear all filters

152322-Thumbnail Image.png
Description
The purpose of this survey study was to collect data from pre-K-12 educators in the U.S. regarding their perceptions of the purpose, conceptions, use, impact, and results of educational research. The survey tool was based on existing questionnaires and case studies in the literature, as well as newly developed items.

The purpose of this survey study was to collect data from pre-K-12 educators in the U.S. regarding their perceptions of the purpose, conceptions, use, impact, and results of educational research. The survey tool was based on existing questionnaires and case studies in the literature, as well as newly developed items. 3,908 educators in a database developed over 10+ years at the world's largest education company were sent a recruiting email; 400 elementary and secondary teachers in the final sample completed the online survey containing 48 questions over a three-week deployment period in the spring of 2013. Results indicated that overall teachers believe educational research is important, that the most important purpose of research is to increase effectiveness of classroom practice, yet research is not frequently sought out during the course of practice. Teachers perceive results in research journals as the most trustworthy yet also perceive research journals the most difficult to access (relying second-most often for research via in-service trainings). These findings have implications for teachers, administrators, policy-makers, and researchers. Educational researchers should seek to address both the theoretical and the applied aspects of learning. Professional development must make explicit links between research findings and classroom strategies and tactics, and research must be made more readily available to those who are not currently seeking additional credentialing, and therefore do not individually have access to scholarly literature. Further research is needed to expand the survey sample and refine the survey instrument. Similar research with administrators in pre-K-20 settings as well as in-depth interviews would serve to investigate the "why" of many findings.
ContributorsMahoney, Shawn (Author) / Savenye, Wilhelmina (Thesis advisor) / Nelson, Brian (Committee member) / Atkinson, Robert (Committee member) / Arizona State University (Publisher)
Created2013
151573-Thumbnail Image.png
Description
The gameplay experience can be understood as an interaction between player and game design characteristics. A greater understanding of these characteristics can be gained through empirical means. Subsequently, an enhanced knowledge of these characteristics should enable the creation of games that effectively generate desirable experiences for players. The purpose of

The gameplay experience can be understood as an interaction between player and game design characteristics. A greater understanding of these characteristics can be gained through empirical means. Subsequently, an enhanced knowledge of these characteristics should enable the creation of games that effectively generate desirable experiences for players. The purpose of this study was to investigate the relationships between gameplay enjoyment and the individual characteristics of gaming goal orientations, game usage, and gender. A total of 301 participants were surveyed and the data were analyzed using Structural Equation Modeling (SEM). This led to an expanded Gameplay Enjoyment Model (GEM) with 41 game features, an overarching Enjoyment factor, and 9 specific components, including Challenge, Companionship, Discovery, Fantasy, Fidelity, Identity, Multiplayer, Recognition, and Strategy. Furthermore, the 3x2 educational goal orientation framework was successfully applied to a gaming context. The resulting 3x2 Gaming Goal Orientations (GGO) model consists of 18 statements that describe players' motivations for gaming, which are distributed across the six dimensions of Task-Approach, Task-Avoidance, Self-Approach, Self-Avoidance, Other-Approach, and Other-Avoidance. Lastly, players' individual characteristics were used to predict gameplay enjoyment, which resulted in the formation of the GEM-Individual Characteristics (GEM-IC) model. In GEM-IC, the six GGO dimensions were the strongest predictors. Meanwhile, game usage variables like multiplayer, genre, and platform preference, were minimal to moderate predictors. Although commonly appearing in games research, gender and game time commitment variables failed to predict enjoyment. The results of this study enable important work to be conducted involving game experiences and player characteristics. After several empirical iterations, GEM is considered suitable to employ as a research and design tool. In addition, GGO should be useful to researchers interested in how player motivations relate to gameplay experiences. Moreover, GEM-IC points to several variables that may prove useful in future research. Accordingly, it is posited that researchers will derive more meaningful insights on games and players by investigating detailed, context-specific characteristics as compared to general, demographic ones. Ultimately, it is believed that GEM, GGO, and GEM-IC will be useful tools for researchers and designers who seek to create effective gameplay experiences that meet the needs of players.
ContributorsQuick, John (Author) / Atkinson, Robert (Thesis advisor) / McNamara, Danielle (Committee member) / Nelson, Brian (Committee member) / Savenye, Wilhelmina (Committee member) / Arizona State University (Publisher)
Created2013
150808-Thumbnail Image.png
Description
The goal of this research was to understand the different kinds of learning that take place in Mod The Sims (MTS), an online Sims gaming community. The study aimed to explore users' experiences and to understand learning practices that are not commonly observed in formal educational settings. To achieve this

The goal of this research was to understand the different kinds of learning that take place in Mod The Sims (MTS), an online Sims gaming community. The study aimed to explore users' experiences and to understand learning practices that are not commonly observed in formal educational settings. To achieve this goal, the researcher conducted a four-year virtual ethnographic study that followed guidelines set forth in Hine (2000). After Hine, the study focused on understanding the complexity of the relationships between technology and social interactions among people, with a particular emphasis on investigating how participants shaped both the culture and structure of the affinity space. The format for the dissertation consists of an introduction, three core chapters that present different sets of findings, and a concluding chapter. Each of the core chapters, which can stand alone as separate studies, applies different theoretical lenses and analytic methods and uses a separate data set. The data corpus includes hundreds of thread posts, member profiles, online interview data obtained through email and personal messaging (PM), numerous screenshots, field notes, and additional artifacts, such as college coursework shared by a participant. Chapter 2 examines thread posts to understand the social support system in MTS and the language learning practices of one member who was a non-English speaker. Chapter 3 analyzes thread posts from administrative staff and users in MTS to identify patterns of interactions, with the goal of ascertaining how users contribute to the ongoing design and redesign of the site. Chapter 4 investigates user-generated tutorials to understand the nature of these instructional texts and how they are adapted to an online context. The final chapter (Chapter 5) presents conclusions about how the analyses overall represent examples of participatory learning practices that expand our understanding of 21st century learning. Finally, the chapter offers theoretical and practical implications, reflections on lessons learned, and suggestions for future research.
ContributorsLee, Yoonhee Naseef (Author) / Hayes, Elisabeth (Thesis advisor) / Gee, James (Committee member) / Nelson, Brian (Committee member) / Arizona State University (Publisher)
Created2012
136383-Thumbnail Image.png
Description
We, a team of students and faculty in the life sciences at Arizona State University (ASU), currently teach an Introduction to Biology course in a Level 5, or maximum-security unit with the support of the Arizona Department of Corrections and the Prison Education Program at ASU. This course aims to

We, a team of students and faculty in the life sciences at Arizona State University (ASU), currently teach an Introduction to Biology course in a Level 5, or maximum-security unit with the support of the Arizona Department of Corrections and the Prison Education Program at ASU. This course aims to enhance current programs at the unit by offering inmates an opportunity to practice literacy and math skills, while also providing exposure to a new academic field (science, and specifically biology). Numerous studies, including a 2005 study from the Arizona Department of Corrections (ADC), have found that vocational programs, including prison education programs, reduce recidivism rates (ADC 2005, Esperian 2010, Jancic 1988, Steurer et al. 2001, Ubic 2002) and may provide additional benefits such as engagement with a world outside the justice system (Duguid 1992), the opportunity for inmates to revise personal patterns of rejecting education that they may regret, and the ability of inmate parents to deliberately set a good example for their children (Hall and Killacky 2008). Teaching in a maximum security prison unit poses special challenges, which include a prohibition on most outside materials (except paper), severe restrictions on student-teacher and student-student interactions, and the inability to perform any lab exercises except limited computer simulations. Lack of literature discussing theoretical and practical aspects of teaching science in such environment has prompted us to conduct an ongoing study to generate notes and recommendations from this class through the use of surveys, academic evaluation of students' work and ongoing feedback from both teachers and students to inform teaching practices in future science classes in high-security prison units.
ContributorsLarson, Anika Jade (Author) / Mor, Tsafrir (Thesis director) / Brownell, Sara (Committee member) / Lockard, Joe (Committee member) / Barrett, The Honors College (Contributor) / School of Politics and Global Studies (Contributor) / School of Life Sciences (Contributor)
Created2015-05
132219-Thumbnail Image.png
Description
This thesis contains three chapters, all of which involve using culturally inclusive education to explore the experiences of religious undergraduate biology students. The first chapter is an essay entitled "Toward Culturally Inclusive Undergraduate Biology Education," which describes a literature review performed with the aim of characterizing the landscape of cultural

This thesis contains three chapters, all of which involve using culturally inclusive education to explore the experiences of religious undergraduate biology students. The first chapter is an essay entitled "Toward Culturally Inclusive Undergraduate Biology Education," which describes a literature review performed with the aim of characterizing the landscape of cultural competence and related terms for biology educators and biology education researchers. This chapter highlights the use of 16 different terms related to cultural competence and presents these terms, their definitions, and highlights their similarities and differences. This chapter also identifies gaps in the cultural competence literature, and presents a set of recommendations to support better culturally inclusive interventions in undergraduate science education. The second chapter, entitled "Different Evolution Acceptance Instruments Lead to Different Research Findings," describes a study in which the source of 30 years of conflicting research on the relationship between evolution acceptance and evolution understanding was determined. The results of this study showed that different instruments used to measure evolution acceptance sometimes lead to different research results and conclusions. The final chapter, entitled "Believing That Evolution is Atheistic is Associated with Poor Evolution Education Outcomes Among Religious College Students," describes a study characterizing definitions of evolution that religious undergraduate biology students may hold, and examines the impact that those definitions of evolution have on multiple outcome variables. In this study, we found that among the most religious students, those who thought evolution is atheistic were less accepting of evolution, less comfortable learning evolution, and perceived greater conflict between their personal religious beliefs and evolution than those who thought evolution is agnostic.
ContributorsDunlop, Hayley Marie (Author) / Brownell, Sara (Thesis director) / Collins, James (Committee member) / Barnes, M. Elizabeth (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133704-Thumbnail Image.png
Description
In response to a national call within STEM to increase diversity within the sciences, there has been a growth in science education research aimed at increasing participation of underrepresented groups in science, such as women and ethnic/racial minorities. However, an underexplored underrepresented group in science are religious students. Though 82%

In response to a national call within STEM to increase diversity within the sciences, there has been a growth in science education research aimed at increasing participation of underrepresented groups in science, such as women and ethnic/racial minorities. However, an underexplored underrepresented group in science are religious students. Though 82% of the United States population is religiously affiliated, only 52% of scientists are religious (Pew, 2009). Even further, only 32% of biologists are religious, with 25% identifying as Christian (Pew, 2009; Ecklund, 2007). One reason as to why Christian individuals are underrepresented in biology is because faculty may express biases that affect students' ability to persist in the field of biology. In this study, we explored how revealing a Christian student's religious identity on science graduate application would impact faculty's perception of the student during the biology graduate application process. We found that faculty were significantly more likely to perceive the student who revealed their religious identity to be less competent, hirable, likeable, and faculty would be less likely to mentor the student. Our study informs upon possible reasons as to why there is an underrepresentation of Christians in science. This further suggests that bias against Christians must be addressed in order to avoid real-world, negative treatment of Christians in science.
ContributorsTruong, Jasmine Maylee (Author) / Brownell, Sara (Thesis director) / Gaughan, Monica (Committee member) / Barnes, Liz (Committee member) / School of Life Sciences (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134485-Thumbnail Image.png
Description
Learning student names has been promoted as an inclusive classroom practice, but it is unknown whether students value having their names known by an instructor. We explored this question in the context of a high-enrollment active-learning undergraduate biology course. Using surveys and semistructured interviews, we investigated whether students perceived that

Learning student names has been promoted as an inclusive classroom practice, but it is unknown whether students value having their names known by an instructor. We explored this question in the context of a high-enrollment active-learning undergraduate biology course. Using surveys and semistructured interviews, we investigated whether students perceived that instructors know their names, the importance of instructors knowing their names, and how instructors learned their names. We found that, while only 20% of students perceived their names were known in previous high-enrollment biology classes, 78% of students perceived that an instructor of this course knew their names. However, instructors only knew 53% of names, indicating that instructors do not have to know student names in order for students to perceive that their names are known. Using grounded theory, we identified nine reasons why students feel that having their names known is important. When we asked students how they perceived instructors learned their names, the most common response was instructor use of name tents during in-class discussion. These findings suggest that students can benefit from perceiving that instructors know their names and name tents could be a relatively easy way for students to think that instructors know their names. Academic self-concept is one's perception of his or her ability in an academic domain compared to other students. As college biology classrooms transition from lecturing to active learning, students interact more with each other and are likely comparing themselves more to students in the class. Student characteristics, such as gender and race/ethnicity, can impact the level of academic self-concept, however this has been unexplored in the context of undergraduate biology. In this study, we explored whether student characteristics can affect academic self-concept in the context of a college physiology course. Using a survey, students self-reported how smart they perceived themselves in the context of physiology compared to the whole class and compared to the student they worked most closely with in class. Using logistic regression, we found that males and native English speakers had significantly higher academic self-concept compared to the whole class compared with females and non-native English speakers, respectively. We also found that males and non-transfer students had significantly higher academic self-concept compared to the student they worked most closely with in class compared with females and transfer students, respectively. Using grounded theory, we identified ten distinct factors that influenced how students determined whether they are more or less smart than their groupmate. Finally, we found that students were more likely to report participating less than their groupmate if they had a lower academic self-concept. These findings suggest that student characteristics can influence students' academic self-concept, which in turn may influence their participation in small group discussion.
ContributorsKrieg, Anna Florence (Author) / Brownell, Sara (Thesis director) / Stout, Valerie (Committee member) / Cooper, Katelyn (Committee member) / School of Life Sciences (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134971-Thumbnail Image.png
Description
This thesis investigates students' learning behaviors through their interaction with an educational technology, Web Programming Grading Assistant. The technology was developed to facilitate the grading of paper-based examinations in large lecture-based classrooms and to provide richer and more meaningful feedback to students. A classroom study was designed and data was

This thesis investigates students' learning behaviors through their interaction with an educational technology, Web Programming Grading Assistant. The technology was developed to facilitate the grading of paper-based examinations in large lecture-based classrooms and to provide richer and more meaningful feedback to students. A classroom study was designed and data was gathered from an undergraduate computer-programming course in the fall of 2016. Analysis of the data revealed that there was a negative correlation between time lag of first review attempt and performance. A survey was developed and disseminated that gave insight into how students felt about the technology and what they normally do to study for programming exams. In conclusion, the knowledge gained in this study aids in the quest to better educate students in computer programming in large in-person classrooms.
ContributorsMurphy, Hannah (Author) / Hsiao, Ihan (Thesis director) / Nelson, Brian (Committee member) / School of Computing, Informatics, and Decision Systems Engineering (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135016-Thumbnail Image.png
Description
Programming is quickly becoming as ubiquitous a tool as general mathematics. The technology field is progressing at an exponential rate and driving this constantly evolving field forward requires competent software developers. Elementary and high school educational facilities do not currently express the importance of the computer science field. Computer science

Programming is quickly becoming as ubiquitous a tool as general mathematics. The technology field is progressing at an exponential rate and driving this constantly evolving field forward requires competent software developers. Elementary and high school educational facilities do not currently express the importance of the computer science field. Computer science is not a required course in high school and nearly impossible to find at a middle school level. This lack of exposure to the field at a young age handicaps aspiring developers by not providing them with a foundation to build on when seeking a degree. This paper revolves around the development of a virtual world that encompasses principles of programming in a video game structure. The use of a virtual world-based game was chosen under the hypothesis that embedding programming instruction into a game through problem-based learning is more likely to engage young students than more traditional forms of instruction. Unlike the traditional method of instruction, a virtual world allows us to "deceive" the player into learning concepts by implicitly educating them through fun gameplay mechanics. In order to make our video game robust and self-sufficient, we have developed a predictive recursive descent parser that will validate any user-generated solutions to pre-defined logical platforming puzzles. Programming topics taught with these problems range from binary numbers to while and for loops.
ContributorsWest, Grant (Co-author) / Kury, Nizar (Co-author) / Nelson, Brian (Thesis director) / Kobayashi, Yoshihiro (Committee member) / Computer Science and Engineering Program (Contributor) / Computing and Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134533-Thumbnail Image.png
Description
Learning to program is no easy task, and many students experience their first programming during their university education. Unfortunately, programming classes have a large number of students enrolled, so it is nearly impossible for professors to associate with the students at an individual level and provide the personal attention each

Learning to program is no easy task, and many students experience their first programming during their university education. Unfortunately, programming classes have a large number of students enrolled, so it is nearly impossible for professors to associate with the students at an individual level and provide the personal attention each student needs. This project aims to provide professors with a tool to quickly respond to the current understanding of the students. This web-based application gives professors the control to quickly ask Java programming questions, and the ability to see the aggregate data on how many of the students have successfully completed the assigned questions. With this system, the students are provided with extra programming practice in a controlled environment, and if there is an error in their program, the system will provide feedback describing what the error means and what steps the student can take to fix it.
ContributorsVillela, Daniel Linus (Author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Hsiao, Sharon (Committee member) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05