Matching Items (3)
Filtering by

Clear all filters

134533-Thumbnail Image.png
Description
Learning to program is no easy task, and many students experience their first programming during their university education. Unfortunately, programming classes have a large number of students enrolled, so it is nearly impossible for professors to associate with the students at an individual level and provide the personal attention each

Learning to program is no easy task, and many students experience their first programming during their university education. Unfortunately, programming classes have a large number of students enrolled, so it is nearly impossible for professors to associate with the students at an individual level and provide the personal attention each student needs. This project aims to provide professors with a tool to quickly respond to the current understanding of the students. This web-based application gives professors the control to quickly ask Java programming questions, and the ability to see the aggregate data on how many of the students have successfully completed the assigned questions. With this system, the students are provided with extra programming practice in a controlled environment, and if there is an error in their program, the system will provide feedback describing what the error means and what steps the student can take to fix it.
ContributorsVillela, Daniel Linus (Author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Hsiao, Sharon (Committee member) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
157864-Thumbnail Image.png
Description
Computer science education is an increasingly vital area of study with various challenges that increase the difficulty level for new students resulting in higher attrition rates. As part of an effort to resolve this issue, a new visual programming language environment was developed for this research, the Visual IoT and

Computer science education is an increasingly vital area of study with various challenges that increase the difficulty level for new students resulting in higher attrition rates. As part of an effort to resolve this issue, a new visual programming language environment was developed for this research, the Visual IoT and Robotics Programming Language Environment (VIPLE). VIPLE is based on computational thinking and flowchart, which reduces the needs of memorization of detailed syntax in text-based programming languages. VIPLE has been used at Arizona State University (ASU) in multiple years and sections of FSE100 as well as in universities worldwide. Another major issue with teaching large programming classes is the potential lack of qualified teaching assistants to grade and offer insight to a student’s programs at a level beyond output analysis.

In this dissertation, I propose a novel framework for performing semantic autograding, which analyzes student programs at a semantic level to help students learn with additional and systematic help. A general autograder is not practical for general programming languages, due to the flexibility of semantics. A practical autograder is possible in VIPLE, because of its simplified syntax and restricted options of semantics. The design of this autograder is based on the concept of theorem provers. To achieve this goal, I employ a modified version of Pi-Calculus to represent VIPLE programs and Hoare Logic to formalize program requirements. By building on the inference rules of Pi-Calculus and Hoare Logic, I am able to construct a theorem prover that can perform automated semantic analysis. Furthermore, building on this theorem prover enables me to develop a self-learning algorithm that can learn the conditions for a program’s correctness according to a given solution program.
ContributorsDe Luca, Gennaro (Author) / Chen, Yinong (Thesis advisor) / Liu, Huan (Thesis advisor) / Hsiao, Sharon (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2020
157884-Thumbnail Image.png
Description
Concept maps are commonly used knowledge visualization tools and have been shown to have a positive impact on learning. The main drawbacks of concept mapping are the requirement of training, and lack of feedback support. Thus, prior research has attempted to provide support and feedback in concept mapping, such as

Concept maps are commonly used knowledge visualization tools and have been shown to have a positive impact on learning. The main drawbacks of concept mapping are the requirement of training, and lack of feedback support. Thus, prior research has attempted to provide support and feedback in concept mapping, such as by developing computer-based concept mapping tools, offering starting templates and navigational supports, as well as providing automated feedback. Although these approaches have achieved promising results, there are still challenges that remain to be solved. For example, there is a need to create a concept mapping system that reduces the extraneous effort of editing a concept map while encouraging more cognitively beneficial behaviors. Also, there is little understanding of the cognitive process during concept mapping. What’s more, current feedback mechanisms in concept mapping only focus on the outcome of the map, instead of the learning process.

This thesis work strives to solve the fundamental research question: How to leverage computer technologies to intelligently support concept mapping to promote meaningful learning? To approach this research question, I first present an intelligent concept mapping system, MindDot, that supports concept mapping via innovative integration of two features, hyperlink navigation, and expert template. The system reduces the effort of creating and modifying concept maps while encouraging beneficial activities such as comparing related concepts and establishing relationships among them. I then present the comparative strategy metric that modes student learning by evaluating behavioral patterns and learning strategies. Lastly, I develop an adaptive feedback system that provides immediate diagnostic feedback in response to both the key learning behaviors during concept mapping and the correctness and completeness of the created maps.

Empirical evaluations indicated that the integrated navigational and template support in MindDot fostered effective learning behaviors and facilitating learning achievements. The comparative strategy model was shown to be highly representative of learning characteristics such as motivation, engagement, misconceptions, and predicted learning results. The feedback tutor also demonstrated positive impacts on supporting learning and assisting the development of effective learning strategies that prepare learners for future learning. This dissertation contributes to the field of supporting concept mapping with designs of technological affordances, a process-based student model, an adaptive feedback tutor, empirical evaluations of these proposed innovations, and implications for future support in concept mapping.
ContributorsWang, Shang (Author) / Walker, Erin (Thesis advisor) / VanLehn, Kurt (Committee member) / Hsiao, Sharon (Committee member) / Long, Yanjin (Committee member) / Arizona State University (Publisher)
Created2019