Matching Items (2)
Filtering by

Clear all filters

Description

In nuclear physics, there is a discrepancy between theory and experiment concerning the number of existing nucleon resonances. Current models predict far more states than have been observed. In particular, few searches have found excited nucleon resonances with energies above 2.2 GeV in the K Lambda channel. To investigate high-mass

In nuclear physics, there is a discrepancy between theory and experiment concerning the number of existing nucleon resonances. Current models predict far more states than have been observed. In particular, few searches have found excited nucleon resonances with energies above 2.2 GeV in the K Lambda channel. To investigate high-mass nucleon resonances, efficiency-corrected yields of the reaction ep --> e K+ Lambda(1520) --> e K+ K- p in the center-of-mass energy range 2.1-4.5 GeV are constructed utilizing Jefferson Lab's CLAS12 detector. This paper presents the results of an analysis searching for high-mass nucleon resonances in the K Lambda channel between 2.1-4.5 GeV.

ContributorsOsar, Rebecca (Author) / Dugger, Michael (Thesis director) / Ritchie, Barry (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor) / School of International Letters and Cultures (Contributor)
Created2023-05
131561-Thumbnail Image.png
Description
In this project, we created a code that was able to simulate the dynamics of a three site Hubbard model ring connected to an infinite dissipative bath and driven by an electric field. We utilized the master equation approach, which will one day be able to be implemented efficiently on

In this project, we created a code that was able to simulate the dynamics of a three site Hubbard model ring connected to an infinite dissipative bath and driven by an electric field. We utilized the master equation approach, which will one day be able to be implemented efficiently on a quantum computer. For now we used classical computing to model one of the simplest nontrivial driven dissipative systems. This will serve as a verification of the master equation method and a baseline to test against when we are able to implement it on a quantum computer. For this report, we will mainly focus on classifying the DC component of the current around our ring. We notice several expected characteristics of this DC current including an inverse square tail at large values of the electric field and a linear response region at small values of the electric field.
ContributorsJohnson, Michael (Author) / Chamberlin, Ralph (Thesis director) / Ritchie, Barry (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05