Matching Items (2)
Filtering by

Clear all filters

132898-Thumbnail Image.png
Description
The intention of this report is to use computer simulations to investigate the viability of two materials, water and polyethylene, as shielding against space radiation. First, this thesis discusses some of the challenges facing future and current manned space missions as a result of galactic cosmic radiation, or GCR. The

The intention of this report is to use computer simulations to investigate the viability of two materials, water and polyethylene, as shielding against space radiation. First, this thesis discusses some of the challenges facing future and current manned space missions as a result of galactic cosmic radiation, or GCR. The project then uses MULASSIS, a Geant4 based radiation simulation tool, to analyze the effectiveness of water and polyethylene based radiation shields against proton radiation with an initial energy of 1 GeV. This specific spectrum of radiation is selected because it a component of GCR that has been shown by previous literature to pose a significant threat to humans on board spacecraft. The analysis of each material indicated that both would have to be several meters thick to adequately protect crew against the simulated radiation over a several year mission. Additionally, an analysis of the mass of a simple spacecraft model with different shield thicknesses showed that the mass would increase significantly with internal space. Thus, using either material as a shield would be expensive as a result of the cost of lifting a large amount of mass into orbit.
ContributorsBonfield, Maclain Peter (Author) / Holbert, Keith (Thesis director) / Young, Patrick (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
171826-Thumbnail Image.png
Description
Information about the elemental composition of a planetary surface can be determined using nuclear instrumentation such as gamma-ray and neutron spectrometers (GRNS). High-energy Galactic Cosmic Rays (GCRs) resulting from cosmic super novae isotropically bombard the surfaces of planetary bodies in space. When GCRs interact with a body’s surface, they can

Information about the elemental composition of a planetary surface can be determined using nuclear instrumentation such as gamma-ray and neutron spectrometers (GRNS). High-energy Galactic Cosmic Rays (GCRs) resulting from cosmic super novae isotropically bombard the surfaces of planetary bodies in space. When GCRs interact with a body’s surface, they can liberate neutrons in a process called spallation, resulting in neutrons and gamma rays being emitted from the planet’s surface; how GCRs and source particles (i.e. active neutron generators) interact with nearby nuclei defines the nuclear environment. In this work I describe the development of nuclear detection systems and techniques for future orbital and landed missions, as well as the implications of nuclear environments on a non-silicate (icy) planetary body. This work aids in the development of future NASA and international missions by presenting many of the capabilities and limitations of nuclear detection systems for a variety of planetary bodies (Earth, the Moon, metallic asteroids, icy moons). From bench top experiments to theoretical simulations, from geochemical hypotheses to instrument calibrations—nuclear planetary science is a challenging and rapidly expanding multidisciplinary field. In this work (1) I describe ground-truth verification of the neutron die-away method using a new type of elpasolite (Cs2YLiCl6:Ce) scintillator, (2) I explore the potential use of temporal neutron measurements on the surface of Titan through Monte-Carlo simulation models, and (3) I report on the experimental spatial efficiency and calibration details of the miniature neutron spectrometer (Mini-NS) on board the NASA LunaH-Map mission. This work presents a subset of planetary nuclear science and its many challenges in humanity's ongoing effort to explore strange new worlds.
ContributorsHeffern, Lena Elizabeth (Author) / Hardgrove, Craig (Thesis advisor) / Elkins-Tanton, Linda (Committee member) / Parsons, Ann (Committee member) / Garvie, Laurence (Committee member) / Holbert, Keith (Committee member) / Lyons, James (Committee member) / Arizona State University (Publisher)
Created2022