Matching Items (5)
Filtering by

Clear all filters

154699-Thumbnail Image.png
Description
Unmanned aerial vehicles have received increased attention in the last decade due to their versatility, as well as the availability of inexpensive sensors (e.g. GPS, IMU) for their navigation and control. Multirotor vehicles, specifically quadrotors, have formed a fast growing field in robotics, with the range of applications spanning from

Unmanned aerial vehicles have received increased attention in the last decade due to their versatility, as well as the availability of inexpensive sensors (e.g. GPS, IMU) for their navigation and control. Multirotor vehicles, specifically quadrotors, have formed a fast growing field in robotics, with the range of applications spanning from surveil- lance and reconnaissance to agriculture and large area mapping. Although in most applications single quadrotors are used, there is an increasing interest in architectures controlling multiple quadrotors executing a collaborative task. This thesis introduces a new concept of control involving more than one quadrotors, according to which two quadrotors can be physically coupled in mid-flight. This concept equips the quadro- tors with new capabilities, e.g. increased payload or pursuit and capturing of other quadrotors. A comprehensive simulation of the approach is built to simulate coupled quadrotors. The dynamics and modeling of the coupled system is presented together with a discussion regarding the coupling mechanism, impact modeling and additional considerations that have been investigated. Simulation results are presented for cases of static coupling as well as enemy quadrotor pursuit and capture, together with an analysis of control methodology and gain tuning. Practical implementations are introduced as results show the feasibility of this design.
ContributorsLarsson, Daniel (Author) / Artemiadis, Panagiotis (Thesis advisor) / Marvi, Hamidreza (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2016
Description

This thesis presents the design and simulation of an energy efficient controller for a system of three drones transporting a payload in a net. The object ensnared in the net is represented as a mass connected by massless stiff springs to each drone. Both a pole-placement approach and an optimal

This thesis presents the design and simulation of an energy efficient controller for a system of three drones transporting a payload in a net. The object ensnared in the net is represented as a mass connected by massless stiff springs to each drone. Both a pole-placement approach and an optimal control approach are used to design a trajectory controller for the system. Results are simulated for a single drone and the three drone system both without and with payload.

ContributorsHayden, Alexander (Author) / Grewal, Anoop (Thesis director) / Berman, Spring (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor)
Created2022-05
171733-Thumbnail Image.png
Description
Multibody Dynamic (MBD) models are important tools in motion analysis and are used to represent and accurately predict the behavior of systems in the real-world. These models have a range of applications, including the stowage and deployment of flexible deployables on spacecraft, the dynamic response of vehicles in automotive design

Multibody Dynamic (MBD) models are important tools in motion analysis and are used to represent and accurately predict the behavior of systems in the real-world. These models have a range of applications, including the stowage and deployment of flexible deployables on spacecraft, the dynamic response of vehicles in automotive design and crash testing, and mapping interactions of the human body. An accurate model can aid in the design of a system to ensure the system is effective and meets specified performance criteria when built. A model may have many design parameters, such as geometrical constraints and component mechanical properties, or controller parameters if the system uses an external controller. Varying these parameters and rerunning analyses by hand to find an ideal design can be time consuming for models that take hours or days to run. To reduce the amount of time required to find a set of parameters that produces a desired performance, optimization is necessary. Many papers have discussed methods for optimizing rigid and flexible MBD models, and separately their controllers, using both gradient-based and gradient-free algorithms. However, these optimization methods have not been used to optimize full-scale MBD models and their controllers simultaneously. This thesis presents a method for co-optimizing an MBD model and controller that allows for the flexibility to find model and controller-based solutions for systems with tightly coupled parameters. Specifically, the optimization is performed on a quadrotor drone MBD model undergoing disturbance from a slung load and its position controller to meet specified position error performance criteria. A gradient-free optimization algorithm and multiple objective approach is used due to the many local optima from the tradeoffs between the model and controller parameters. The thesis uses nine different quadrotor cases with three different position error formulations. The results are used to determine the effectiveness of the optimization and the ability to converge on a single optimal design. After reviewing the results, the optimization limitations are discussed as well as the ability to transition the optimization to work with different MBD models and their controllers.
ContributorsGambatese, Marcus (Author) / Zhang, Wenlong (Thesis advisor) / Berman, Spring (Committee member) / Inoyama, Daisaku (Committee member) / Arizona State University (Publisher)
Created2022
157851-Thumbnail Image.png
Description
Vehicles traverse granular media through complex reactions with large numbers of small particles. Many approaches rely on empirical trends derived from wheeled vehicles in well-characterized media. However, the environments of numerous bodies such as Mars or the moon are primarily composed of fines called regolith which require different design considerations.

Vehicles traverse granular media through complex reactions with large numbers of small particles. Many approaches rely on empirical trends derived from wheeled vehicles in well-characterized media. However, the environments of numerous bodies such as Mars or the moon are primarily composed of fines called regolith which require different design considerations. This dissertation discusses research aimed at understanding the role and function of empirical, computational, and theoretical granular physics approaches as they apply to helical geometries, their envelope of applicability, and the development of new laws. First, a static Archimedes screw submerged in granular material (glass beads) is analyzed using two methods: Granular Resistive Force Theory (RFT), an empirically derived set of equations based on fluid dynamic superposition principles, and Discrete element method (DEM) simulations, a particle modeling software. Dynamic experiments further confirm the computational method with multi-body dynamics (MBD)-DEM co-simulations. Granular Scaling Laws (GSL), a set of physics relationships based on non-dimensional analysis, are utilized for the gravity-modified environments. A testing chamber to contain a lunar analogue, BP-1, is developed and built. An investigation of straight and helical grousered wheels in both silica sand and BP-1 is performed to examine general GSL applicability for lunar purposes. Mechanical power draw and velocity prediction by GSL show non-trivial but predictable deviation. BP-1 properties are characterized and applied to an MBD-DEM environment for the first time. MBD-DEM simulation results between Earth gravity and lunar gravity show good agreement with theoretical predictions for both power and velocity. The experimental deviation is further investigated and found to have a mass-dependant component driven by granular sinkage and engagement. Finally, a robust set of helical granular scaling laws (HGSL) are derived. The granular dynamics scaling of three-dimensional screw-driven mobility is reduced to a similar theory as wheeled scaling laws, provided the screw is radially continuous. The new laws are validated in BP-1 with results showing very close agreement to predictions. A gravity-variant version of these laws is validated with MBD-DEM simulations. The results of the dissertation suggest GSL, HGSL, and MBD-DEM give reasonable approximations for use in lunar environments to predict rover mobility given adequate granular engagement.
ContributorsThoesen, Andrew Lawrence (Author) / Marvi, Hamidreza (Thesis advisor) / Berman, Spring (Committee member) / Emady, Heather (Committee member) / Lee, Hyunglae (Committee member) / Klesh, Andrew (Committee member) / Arizona State University (Publisher)
Created2019
132094-Thumbnail Image.png
Description
With the revolution of low-cost microelectronics, rotary-wing vehicles have grown increasingly popular and important in the past two decades. With increased interest in quadcopters comes the need to for a systematic and rigorous framework to model, analyze, control, and design them. This thesis presents the beginning of such a framework.

With the revolution of low-cost microelectronics, rotary-wing vehicles have grown increasingly popular and important in the past two decades. With increased interest in quadcopters comes the need to for a systematic and rigorous framework to model, analyze, control, and design them. This thesis presents the beginning of such a framework.

The work presents the nonlinear equations of motion of a quadcopter. This includes the translational and rotational equations of motion, as well as an analysis of the nonlinear actuator dynamics. The work then analyzes the static properties of a quadcopter in forward flight equilibrium and shows how static properties change as physical properties of the vehicle are varied. Next, the dynamics of forward flight are linearized, and a dynamic analysis is provided.

After dynamic analysis, the work shows detailed hierarchical control system design trade studies, which includes attitude and translational inner-outer loop control. Among other designs, the following are presented: PD control, proportional control, pole-placement control. Each of these control architectures are employed for the inner loops and outer loops. The work also analyzes linear versus nonlinear simulation performance of a quadcopter, specifically for a step x-axis reference command. It is found that the nonlinear dynamics of the actuator cause significant discrepancy between linear and nonlinear simulation.

Finally, this thesis establishes directions for future graduate research. This includes hardware design, as well as moving toward design of a highly-maneuverable thrust-vectoring quadrotor which will be the focus of the proposed graduate PhD research. In summary, this thesis provides the beginning of a cohesive framework to model, analyze, control, and design quadcopters. It also lays the groundwork for graduate research and beyond.
ContributorsWallace, Brent (Author) / Rodriguez, Armando (Thesis director) / Berman, Spring (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12