Matching Items (14)
Filtering by

Clear all filters

154885-Thumbnail Image.png
Description
Computational visual aesthetics has recently become an active research area. Existing state-of-art methods formulate this as a binary classification task where a given image is predicted to be beautiful or not. In many applications such as image retrieval and enhancement, it is more important to rank images based on their

Computational visual aesthetics has recently become an active research area. Existing state-of-art methods formulate this as a binary classification task where a given image is predicted to be beautiful or not. In many applications such as image retrieval and enhancement, it is more important to rank images based on their aesthetic quality instead of binary-categorizing them. Furthermore, in such applications, it may be possible that all images belong to the same category. Hence determining the aesthetic ranking of the images is more appropriate. To this end, a novel problem of ranking images with respect to their aesthetic quality is formulated in this work. A new data-set of image pairs with relative labels is constructed by carefully selecting images from the popular AVA data-set. Unlike in aesthetics classification, there is no single threshold which would determine the ranking order of the images across the entire data-set.

This problem is attempted using a deep neural network based approach that is trained on image pairs by incorporating principles from relative learning. Results show that such relative training procedure allows the network to rank the images with a higher accuracy than a state-of-art network trained on the same set of images using binary labels. Further analyzing the results show that training a model using the image pairs learnt better aesthetic features than training on same number of individual binary labelled images.

Additionally, an attempt is made at enhancing the performance of the system by incorporating saliency related information. Given an image, humans might fixate their vision on particular parts of the image, which they might be subconsciously intrigued to. I therefore tried to utilize the saliency information both stand-alone as well as in combination with the global and local aesthetic features by performing two separate sets of experiments. In both the cases, a standard saliency model is chosen and the generated saliency maps are convoluted with the images prior to passing them to the network, thus giving higher importance to the salient regions as compared to the remaining. Thus generated saliency-images are either used independently or along with the global and the local features to train the network. Empirical results show that the saliency related aesthetic features might already be learnt by the network as a sub-set of the global features from automatic feature extraction, thus proving the redundancy of the additional saliency module.
ContributorsGattupalli, Jaya Vijetha (Author) / Li, Baoxin (Thesis advisor) / Davulcu, Hasan (Committee member) / Liang, Jianming (Committee member) / Arizona State University (Publisher)
Created2016
154909-Thumbnail Image.png
Description
Nowadays, Computing is so pervasive that it has become indeed the 5th utility (after water, electricity, gas, telephony) as Leonard Kleinrock once envisioned. Evolved from utility computing, cloud computing has emerged as a computing infrastructure that enables rapid delivery of computing resources as a utility in a dynamically

Nowadays, Computing is so pervasive that it has become indeed the 5th utility (after water, electricity, gas, telephony) as Leonard Kleinrock once envisioned. Evolved from utility computing, cloud computing has emerged as a computing infrastructure that enables rapid delivery of computing resources as a utility in a dynamically scalable, virtualized manner. However, the current industrial cloud computing implementations promote segregation among different cloud providers, which leads to user lockdown because of prohibitive migration cost. On the other hand, Service-Orented Computing (SOC) including service-oriented architecture (SOA) and Web Services (WS) promote standardization and openness with its enabling standards and communication protocols. This thesis proposes a Service-Oriented Cloud Computing Architecture by combining the best attributes of the two paradigms to promote an open, interoperable environment for cloud computing development. Mutil-tenancy SaaS applicantions built on top of SOCCA have more flexibility and are not locked down by a certain platform. Tenants residing on a multi-tenant application appear to be the sole owner of the application and not aware of the existence of others. A multi-tenant SaaS application accommodates each tenant’s unique requirements by allowing tenant-level customization. A complex SaaS application that supports hundreds, even thousands of tenants could have hundreds of customization points with each of them providing multiple options, and this could result in a huge number of ways to customize the application. This dissertation also proposes innovative customization approaches, which studies similar tenants’ customization choices and each individual users behaviors, then provides guided semi-automated customization process for the future tenants. A semi-automated customization process could enable tenants to quickly implement the customization that best suits their business needs.
ContributorsSun, Xin (Author) / Tsai, Wei-Tek (Thesis advisor) / Xue, Guoliang (Committee member) / Davulcu, Hasan (Committee member) / Sarjoughian, Hessam S. (Committee member) / Arizona State University (Publisher)
Created2016
155339-Thumbnail Image.png
Description
The widespread adoption of computer vision models is often constrained by the issue of domain mismatch. Models that are trained with data belonging to one distribution, perform poorly when tested with data from a different distribution. Variations in vision based data can be attributed to the following reasons, viz., differences

The widespread adoption of computer vision models is often constrained by the issue of domain mismatch. Models that are trained with data belonging to one distribution, perform poorly when tested with data from a different distribution. Variations in vision based data can be attributed to the following reasons, viz., differences in image quality (resolution, brightness, occlusion and color), changes in camera perspective, dissimilar backgrounds and an inherent diversity of the samples themselves. Machine learning techniques like transfer learning are employed to adapt computational models across distributions. Domain adaptation is a special case of transfer learning, where knowledge from a source domain is transferred to a target domain in the form of learned models and efficient feature representations.

The dissertation outlines novel domain adaptation approaches across different feature spaces; (i) a linear Support Vector Machine model for domain alignment; (ii) a nonlinear kernel based approach that embeds domain-aligned data for enhanced classification; (iii) a hierarchical model implemented using deep learning, that estimates domain-aligned hash values for the source and target data, and (iv) a proposal for a feature selection technique to reduce cross-domain disparity. These adaptation procedures are tested and validated across a range of computer vision applications like object classification, facial expression recognition, digit recognition, and activity recognition. The dissertation also provides a unique perspective of domain adaptation literature from the point-of-view of linear, nonlinear and hierarchical feature spaces. The dissertation concludes with a discussion on the future directions for research that highlight the role of domain adaptation in an era of rapid advancements in artificial intelligence.
ContributorsDemakethepalli Venkateswara, Hemanth (Author) / Panchanathan, Sethuraman (Thesis advisor) / Li, Baoxin (Committee member) / Davulcu, Hasan (Committee member) / Ye, Jieping (Committee member) / Chakraborty, Shayok (Committee member) / Arizona State University (Publisher)
Created2017
153969-Thumbnail Image.png
Description
Emerging trends in cyber system security breaches in critical cloud infrastructures show that attackers have abundant resources (human and computing power), expertise and support of large organizations and possible foreign governments. In order to greatly improve the protection of critical cloud infrastructures, incorporation of human behavior is needed to predict

Emerging trends in cyber system security breaches in critical cloud infrastructures show that attackers have abundant resources (human and computing power), expertise and support of large organizations and possible foreign governments. In order to greatly improve the protection of critical cloud infrastructures, incorporation of human behavior is needed to predict potential security breaches in critical cloud infrastructures. To achieve such prediction, it is envisioned to develop a probabilistic modeling approach with the capability of accurately capturing system-wide causal relationship among the observed operational behaviors in the critical cloud infrastructure and accurately capturing probabilistic human (users’) behaviors on subsystems as the subsystems are directly interacting with humans. In our conceptual approach, the system-wide causal relationship can be captured by the Bayesian network, and the probabilistic human behavior in the subsystems can be captured by the Markov Decision Processes. The interactions between the dynamically changing state graphs of Markov Decision Processes and the dynamic causal relationships in Bayesian network are key components in such probabilistic modelling applications. In this thesis, two techniques are presented for supporting the above vision to prediction of potential security breaches in critical cloud infrastructures. The first technique is for evaluation of the conformance of the Bayesian network with the multiple MDPs. The second technique is to evaluate the dynamically changing Bayesian network structure for conformance with the rules of the Bayesian network using a graph checker algorithm. A case study and its simulation are presented to show how the two techniques support the specific parts in our conceptual approach to predicting system-wide security breaches in critical cloud infrastructures.
ContributorsNagaraja, Vinjith (Author) / Yau, Stephen S. (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2015