Matching Items (2)
Filtering by

Clear all filters

153158-Thumbnail Image.png
Description
Stroke is a leading cause of disability with varying effects across stroke survivors necessitating comprehensive approaches to rehabilitation. Interactive neurorehabilitation (INR) systems represent promising technological solutions that can provide an array of sensing, feedback and analysis tools which hold the potential to maximize clinical therapy as well as extend therapy

Stroke is a leading cause of disability with varying effects across stroke survivors necessitating comprehensive approaches to rehabilitation. Interactive neurorehabilitation (INR) systems represent promising technological solutions that can provide an array of sensing, feedback and analysis tools which hold the potential to maximize clinical therapy as well as extend therapy to the home. Currently, there are a variety of approaches to INR design, which coupled with minimal large-scale clinical data, has led to a lack of cohesion in INR design. INR design presents an inherently complex space as these systems have multiple users including stroke survivors, therapists and designers, each with their own user experience needs. This dissertation proposes that comprehensive INR design, which can address this complex user space, requires and benefits from the application of interdisciplinary research that spans motor learning and interactive learning. A methodology for integrated and iterative design approaches to INR task experience, assessment, hardware, software and interactive training protocol design is proposed within the comprehensive example of design and implementation of a mixed reality rehabilitation system for minimally supervised environments. This system was tested with eight stroke survivors who showed promising results in both functional and movement quality improvement. The results of testing the system with stroke survivors as well as observing user experiences will be presented along with suggested improvements to the proposed design methodology. This integrative design methodology is proposed to have benefit for not only comprehensive INR design but also complex interactive system design in general.
ContributorsBaran, Michael (Author) / Rikakis, Thanassis (Thesis advisor) / Olson, Loren (Thesis advisor) / Wolf, Steven L. (Committee member) / Ingalls, Todd (Committee member) / Arizona State University (Publisher)
Created2014
135958-Thumbnail Image.png
Description
With the increasing popularity of video games and the emergence of game streaming brought about by platforms such as Youtube and Twitch, combined with the multitude of ways to learn how to code from schools and online resources including Codecademy and Treehouse, game development has become incredibly approachable. Yet that

With the increasing popularity of video games and the emergence of game streaming brought about by platforms such as Youtube and Twitch, combined with the multitude of ways to learn how to code from schools and online resources including Codecademy and Treehouse, game development has become incredibly approachable. Yet that does not mean it is simple. Developing a game requires a substantial amount of work, even before a design is considered worth making into a complete game. Over the course of this thesis, I created eight designs with accompanying prototypes. Only one was made into a fully functional release. I sought to make a game with a great design while increasing my understanding of game development and the code needed to finish a game. I came out realizing that I was in over my head. With the amount of work involved in creating an entire game, iteration is key to finding an idea that is capable of becoming a game that feels complete and enjoyable. A game's design must be fleshed out before technical work can truly begin, yet the design can take nearly as much time and effort as the code. In this thesis, each design is detailed and associated with why it seemed great and why it was replaced, with extra focus on the final design and how players felt about it. These designs are followed by what I learned about game development over the course of the thesis, including both the technical and emotional sides of developing a video game.
ContributorsCharnell, Zachary Andrew (Author) / Olson, Loren (Thesis director) / Amresh, Ashish (Committee member) / School of Arts, Media and Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12