Matching Items (660)
Filtering by

Clear all filters

149992-Thumbnail Image.png
Description
Process variations have become increasingly important for scaled technologies starting at 45nm. The increased variations are primarily due to random dopant fluctuations, line-edge roughness and oxide thickness fluctuation. These variations greatly impact all aspects of circuit performance and pose a grand challenge to future robust IC design. To improve robustness,

Process variations have become increasingly important for scaled technologies starting at 45nm. The increased variations are primarily due to random dopant fluctuations, line-edge roughness and oxide thickness fluctuation. These variations greatly impact all aspects of circuit performance and pose a grand challenge to future robust IC design. To improve robustness, efficient methodology is required that considers effect of variations in the design flow. Analyzing timing variability of complex circuits with HSPICE simulations is very time consuming. This thesis proposes an analytical model to predict variability in CMOS circuits that is quick and accurate. There are several analytical models to estimate nominal delay performance but very little work has been done to accurately model delay variability. The proposed model is comprehensive and estimates nominal delay and variability as a function of transistor width, load capacitance and transition time. First, models are developed for library gates and the accuracy of the models is verified with HSPICE simulations for 45nm and 32nm technology nodes. The difference between predicted and simulated σ/μ for the library gates is less than 1%. Next, the accuracy of the model for nominal delay is verified for larger circuits including ISCAS'85 benchmark circuits. The model predicted results are within 4% error of HSPICE simulated results and take a small fraction of the time, for 45nm technology. Delay variability is analyzed for various paths and it is observed that non-critical paths can become critical because of Vth variation. Variability on shortest paths show that rate of hold violations increase enormously with increasing Vth variation.
ContributorsGummalla, Samatha (Author) / Chakrabarti, Chaitali (Thesis advisor) / Cao, Yu (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Arizona State University (Publisher)
Created2011
149997-Thumbnail Image.png
Description
This thesis pursues a method to deregulate the electric distribution system and provide support to distributed renewable generation. A locational marginal price is used to determine prices across a distribution network in real-time. The real-time pricing may provide benefits such as a reduced electricity bill, decreased peak demand, and lower

This thesis pursues a method to deregulate the electric distribution system and provide support to distributed renewable generation. A locational marginal price is used to determine prices across a distribution network in real-time. The real-time pricing may provide benefits such as a reduced electricity bill, decreased peak demand, and lower emissions. This distribution locational marginal price (D-LMP) determines the cost of electricity at each node in the electrical network. The D-LMP is comprised of the cost of energy, cost of losses, and a renewable energy premium. The renewable premium is an adjustable function to compensate `green' distributed generation. A D-LMP is derived and formulated from the PJM model, as well as several alternative formulations. The logistics and infrastructure an implementation is briefly discussed. This study also takes advantage of the D-LMP real-time pricing to implement distributed storage technology. A storage schedule optimization is developed using linear programming. Day-ahead LMPs and historical load data are used to determine a predictive optimization. A test bed is created to represent a practical electric distribution system. Historical load, solar, and LMP data are used in the test bed to create a realistic environment. A power flow and tabulation of the D-LMPs was conducted for twelve test cases. The test cases included various penetrations of solar photovoltaics (PV), system networking, and the inclusion of storage technology. Tables of the D-LMPs and network voltages are presented in this work. The final costs are summed and the basic economics are examined. The use of a D-LMP can lower costs across a system when advanced technologies are used. Storage improves system costs, decreases losses, improves system load factor, and bolsters voltage. Solar energy provides many of these same attributes at lower penetrations, but high penetrations have a detrimental effect on the system. System networking also increases these positive effects. The D-LMP has a positive impact on residential customer cost, while greatly increasing the costs for the industrial sector. The D-LMP appears to have many positive impacts on the distribution system but proper cost allocation needs further development.
ContributorsKiefer, Brian Daniel (Author) / Heydt, Gerald T (Thesis advisor) / Shunk, Dan (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2011
150048-Thumbnail Image.png
Description
A wireless hybrid device for detecting volatile organic compounds (VOCs) has been developed. The device combines a highly selective and sensitive tuning-fork based detector with a pre-concentrator and a separation column. The selectivity and sensitivity of the tuning-fork based detector is optimized for discrimination and quantification of benzene, toluene, ethylbenzene,

A wireless hybrid device for detecting volatile organic compounds (VOCs) has been developed. The device combines a highly selective and sensitive tuning-fork based detector with a pre-concentrator and a separation column. The selectivity and sensitivity of the tuning-fork based detector is optimized for discrimination and quantification of benzene, toluene, ethylbenzene, and xylenes (BTEX) via a homemade molecular imprinted polymer, and a specific detection and control circuit. The device is a wireless, portable, battery-powered, and cell-phone operated device. The device has been calibrated and validated in the laboratory and using selected ion flow tube mass spectrometry (SFIT-MS). The capability and robustness are also demonstrated in some field tests. It provides rapid and reliable detection of BTEX in real samples, including challenging high concentrations of interferents, and it is suitable for occupational, environmental health and epidemiological applications.
ContributorsChen, Zheng (Author) / Tao, Nongjian (Thesis advisor) / Chae, Junseok (Committee member) / Forzani, Erica (Committee member) / Arizona State University (Publisher)
Created2011
149726-Thumbnail Image.png
Description
In recent years, the length of time people use and keep belongings has decreased. With the acceptance of short-lived furniture and inexpensive replacements, the American mentality has shifted to thinking that discarding furniture is normal, often in the guise of recycling. Americans are addicted to landfills. The high cost of

In recent years, the length of time people use and keep belongings has decreased. With the acceptance of short-lived furniture and inexpensive replacements, the American mentality has shifted to thinking that discarding furniture is normal, often in the guise of recycling. Americans are addicted to landfills. The high cost of landfill real estate and other considerable ecological impacts created by the manufacturing of furniture should persuade people to give their belongings a longer life, but in reality, furniture is often prematurely discarded. This grounded theory study takes a multi-method approach to analyze why some types of furniture are kept longer and to theorize about new ways to design and sell furniture that lasts well past its warranty. Case studies bring new insight into designer intention, manufacturer intent, the world of auction-worthy collectables and heirlooms, why there is a booming second-hand furniture market and the growing importance of informed interior designers and architects who specify or help clients choose interior furnishings. An environmental life cycle assessment compares how the length of furniture life affects environmental impacts. A product's life could continue for generations if properly maintained. Designers and manufacturers hoping to promote longevity can apply the conclusions of this report in bringing new pieces to the market that have a much longer life span. This study finds areas of opportunity that promote user attachment, anticipate future repurposing, and provide services. This thinking envisions a paradigm for furniture that can re-invent itself over multiple generations of users, and ultimately lead to a new wave of desirable heirloom furniture.
ContributorsIngham, Sarah (Author) / White, Philip (Thesis advisor) / Wolf, Peter (Committee member) / Underhill, Michael (Committee member) / Arizona State University (Publisher)
Created2011
149780-Thumbnail Image.png
Description
The demand for handheld portable computing in education, business and research has resulted in advanced mobile devices with powerful processors and large multi-touch screens. Such devices are capable of handling tasks of moderate computational complexity such as word processing, complex Internet transactions, and even human motion analysis. Apple's iOS devices,

The demand for handheld portable computing in education, business and research has resulted in advanced mobile devices with powerful processors and large multi-touch screens. Such devices are capable of handling tasks of moderate computational complexity such as word processing, complex Internet transactions, and even human motion analysis. Apple's iOS devices, including the iPhone, iPod touch and the latest in the family - the iPad, are among the well-known and widely used mobile devices today. Their advanced multi-touch interface and improved processing power can be exploited for engineering and STEM demonstrations. Moreover, these devices have become a part of everyday student life. Hence, the design of exciting mobile applications and software represents a great opportunity to build student interest and enthusiasm in science and engineering. This thesis presents the design and implementation of a portable interactive signal processing simulation software on the iOS platform. The iOS-based object-oriented application is called i-JDSP and is based on the award winning Java-DSP concept. It is implemented in Objective-C and C as a native Cocoa Touch application that can be run on any iOS device. i-JDSP offers basic signal processing simulation functions such as Fast Fourier Transform, filtering, spectral analysis on a compact and convenient graphical user interface and provides a very compelling multi-touch programming experience. Built-in modules also demonstrate concepts such as the Pole-Zero Placement. i-JDSP also incorporates sound capture and playback options that can be used in near real-time analysis of speech and audio signals. All simulations can be visually established by forming interactive block diagrams through multi-touch and drag-and-drop. Computations are performed on the mobile device when necessary, making the block diagram execution fast. Furthermore, the extensive support for user interactivity provides scope for improved learning. The results of i-JDSP assessment among senior undergraduate and first year graduate students revealed that the software created a significant positive impact and increased the students' interest and motivation and in understanding basic DSP concepts.
ContributorsLiu, Jinru (Author) / Spanias, Andreas (Thesis advisor) / Tsakalis, Kostas (Committee member) / Qian, Gang (Committee member) / Arizona State University (Publisher)
Created2011
149645-Thumbnail Image.png
Description
Due to the growing concerns on the depletion of petroleum based energy resources and climate change; fuel cell technologies have received much attention in recent years. Proton exchange membrane fuel cell (PEMFCs) features high energy conversion efficiency and nearly zero greenhouse gas emissions, because of its combination of the hydrogen

Due to the growing concerns on the depletion of petroleum based energy resources and climate change; fuel cell technologies have received much attention in recent years. Proton exchange membrane fuel cell (PEMFCs) features high energy conversion efficiency and nearly zero greenhouse gas emissions, because of its combination of the hydrogen oxidation reaction (HOR) at anode side and oxygen reduction reaction (ORR) at cathode side. Synthesis of Pt nanoparticles supported on multi walled carbon nanotubes (MWCNTs) possess a highly durable electrochemical surface area (ESA) and show good power output on proton exchange membrane (PEM) fuel cell performance. Platinum on multi-walled carbon nanotubes (MWCNTs) support were synthesized by two different processes to transfer PtCl62- from aqueous to organic phase. While the first method of Pt/MWCNTs synthesis involved dodecane thiol (DDT) and octadecane thiol (ODT) as anchoring agent, the second method used ammonium lauryl sulfate (ALS) as the dispersion/anchoring agent. The particle size and distribution of platinum were examined by high-resolution transmission electron microscope (HRTEM). The TEM images showed homogenous distribution and uniform particle size of platinum deposited on the surface of MWCNTs. The single cell fuel cell performance of the Pt/MWCNTs synthesized thiols and ALS based electrode containing 0.2 (anode) and 0.4 mg (cathode) Pt.cm-2 were evaluated using Nafion-212 electrolyte with H2 and O2 gases at 80 oC and ambient pressure. The catalyst synthesis with ALS is relatively simple compared to that with thiols and also showed higher performance (power density reaches about 1070 mW.cm-2). The Electrodes with Pt/MWCNTs nanocatalysts synthesized using ALS were characterized by cyclic voltammetry (CV) for durability evaluation using humidified H2 and N2 gases at room temperature (21 oC) along with commercial Pt/C for comparison. The ESA measured by cyclic voltammetry between 0.15 and 1.2 V showed significant less degradation after 1000 cycles for ALS based Pt/MWCNTs.
ContributorsLiu, Xuan (Author) / Madakannan, Arunachalanadar (Thesis advisor) / Munukutla, Lakshmi (Committee member) / Tamizhmani, Govindasamy (Committee member) / Arizona State University (Publisher)
Created2011
149788-Thumbnail Image.png
Description
Residue number systems have gained significant importance in the field of high-speed digital signal processing due to their carry-free nature and speed-up provided by parallelism. The critical aspect in the application of RNS is the selection of the moduli set and the design of the conversion units. There have been

Residue number systems have gained significant importance in the field of high-speed digital signal processing due to their carry-free nature and speed-up provided by parallelism. The critical aspect in the application of RNS is the selection of the moduli set and the design of the conversion units. There have been several RNS moduli sets proposed for the implementation of digital filters. However, some are unbalanced and some do not provide the required dynamic range. This thesis addresses the drawbacks of existing RNS moduli sets and proposes a new moduli set for efficient implementation of FIR filters. An efficient VLSI implementation model has been derived for the design of a reverse converter from RNS to the conventional two's complement representation. This model facilitates the realization of a reverse converter for better performance with less hardware complexity when compared with the reverse converter designs of the existing balanced 4-moduli sets. Experimental results comparing multiply and accumulate units using RNS that are implemented using the proposed four-moduli set with the state-of-the-art balanced four-moduli sets, show large improvements in area (46%) and power (43%) reduction for various dynamic ranges. RNS FIR filters using the proposed moduli-set and existing balanced 4-moduli set are implemented in RTL and compared for chip area and power and observed 20% improvements. This thesis also presents threshold logic implementation of the reverse converter.
ContributorsChalivendra, Gayathri (Author) / Vrudhula, Sarma (Thesis advisor) / Shrivastava, Aviral (Committee member) / Bakkaloglu, Bertan (Committee member) / Arizona State University (Publisher)
Created2011
150370-Thumbnail Image.png
Description
Individuals' experiences, environment, and education greatly impact their entire being. Similarly, a designer is affected by these elements, which impacts how, what and why they design. In order for design education to generate designers who are more socially aware problem solvers, that education must introduce complex social matters and not

Individuals' experiences, environment, and education greatly impact their entire being. Similarly, a designer is affected by these elements, which impacts how, what and why they design. In order for design education to generate designers who are more socially aware problem solvers, that education must introduce complex social matters and not just design skills. Traditionally designers learned through apprenticing a master. Most design education has moved away from this traditional model and has begun incorporating a well-rounded program of study, yet there are still more improvements to be made. This research proposes a new Integrated Transformational Experience Model, ITEM, for design education which will be rooted in sustainability, cultural integration, social embeddedness, and discipline collaboration. The designer will be introduced to new ideas and experiences from the immersion of current social issues where they will gain experience creating solutions to global problems enabling them to become catalysts of change. This research is based on interviews with industrial design students to gain insights, benefits and drawbacks of the current model of design education. This research will expand on the current model for design education, combining new ideas that will shed light on the future of design disciplines through the education and motivation of designers. The desired outcome of this study is to incorporate hands on learning through social issues in design classrooms, identify ways to educate future problem solvers, and inspire more research on this issue.
ContributorsWingate, Andrea (Author) / Takamura, John (Thesis advisor) / Stamm, Jill (Committee member) / Bender, Diane (Committee member) / Arizona State University (Publisher)
Created2011
150347-Thumbnail Image.png
Description
Interior design continues to re-define itself as a discipline that presents designers with new problems that require innovative solutions. This is particularly true in the case in office design. The transformation of the office environment from the standard bullpen configuration to today's dynamic, flexible, and open floor plans has required

Interior design continues to re-define itself as a discipline that presents designers with new problems that require innovative solutions. This is particularly true in the case in office design. The transformation of the office environment from the standard bullpen configuration to today's dynamic, flexible, and open floor plans has required new design methodologies that incorporate tools and technologies that are readily available to interior designers. Today, increased use of teams in the workplace challenges interior designers to create environments that accommodate both group and individual tasks (Brill, Weidermann & BOSTI associates, 2001). Collaboration has received considerable attention as organizations focus on productivity and reducing costs to compete in a global economy (Hassanain, 2006). Designers and architects should learn to create environments that respond to dynamic, moveable, and flexible work methods. This web-based research study explores the use of pattern language as a new tool for designing collaborative work environments. In 1977, Christopher Alexander and his associates developed `Pattern language' (Alexander, Ishikawa & Silverstein, 1977) as a design formulation methodology. It consists of a series of interrelated physical elements combined to create a framework for design solutions. This pattern language tool for collaborative work environments was created based on research by Lori Anthony (2001). This study further builds upon current trends and research in collaborative work environments. The researcher conducted a pilot test by sending the web-based tool and an online questionnaire to all graduate students and faculty members in the fields of interior design and healthcare and healing environment (HHE). After testing its validity in The Design School at Arizona State University, the same tool and questionnaire was sent to the employees of one of the leading architecture and interior design firms in Phoenix, AZ. The results showed that among those design professionals surveyed, the majority believe pattern language could be a valuable design tool. The insights obtained from this study will provide designers, architects, and facility managers with a new design tool to aid in creating effective collaborative spaces in a work environment.
ContributorsSangoi, Deepika (Author) / Bender, Diane (Thesis advisor) / Brandt, Beverly (Committee member) / Heywood, William (Committee member) / Arizona State University (Publisher)
Created2011
150353-Thumbnail Image.png
Description
Advancements in computer vision and machine learning have added a new dimension to remote sensing applications with the aid of imagery analysis techniques. Applications such as autonomous navigation and terrain classification which make use of image classification techniques are challenging problems and research is still being carried out to find

Advancements in computer vision and machine learning have added a new dimension to remote sensing applications with the aid of imagery analysis techniques. Applications such as autonomous navigation and terrain classification which make use of image classification techniques are challenging problems and research is still being carried out to find better solutions. In this thesis, a novel method is proposed which uses image registration techniques to provide better image classification. This method reduces the error rate of classification by performing image registration of the images with the previously obtained images before performing classification. The motivation behind this is the fact that images that are obtained in the same region which need to be classified will not differ significantly in characteristics. Hence, registration will provide an image that matches closer to the previously obtained image, thus providing better classification. To illustrate that the proposed method works, naïve Bayes and iterative closest point (ICP) algorithms are used for the image classification and registration stages respectively. This implementation was tested extensively in simulation using synthetic images and using a real life data set called the Defense Advanced Research Project Agency (DARPA) Learning Applied to Ground Robots (LAGR) dataset. The results show that the ICP algorithm does help in better classification with Naïve Bayes by reducing the error rate by an average of about 10% in the synthetic data and by about 7% on the actual datasets used.
ContributorsMuralidhar, Ashwini (Author) / Saripalli, Srikanth (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2011