Matching Items (3)
Filtering by

Clear all filters

137618-Thumbnail Image.png
Description
Currently conventional Subtitle D landfills are the primary means of disposing of our waste in the United States. While this method of waste disposal aims at protecting the environment, it does so through the use of liners and caps that effectively freeze the breakdown of waste. Because this method can

Currently conventional Subtitle D landfills are the primary means of disposing of our waste in the United States. While this method of waste disposal aims at protecting the environment, it does so through the use of liners and caps that effectively freeze the breakdown of waste. Because this method can keep landfills active, and thus a potential groundwater threat for over a hundred years, I take an in depth look at the ability of bioreactor landfills to quickly stabilize waste. In the thesis I detail the current state of bioreactor landfill technologies, assessing the pros and cons of anaerobic and aerobic bioreactor technologies. Finally, with an industrial perspective, I conclude that moving on to bioreactor landfills as an alternative isn't as simple as it may first appear, and that it is a contextually specific solution that must be further refined before replacing current landfills.
ContributorsWhitten, George Avery (Author) / Kavazanjian, Edward (Thesis director) / Allenby, Braden (Committee member) / Houston, Sandra (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2013-05
171930-Thumbnail Image.png
Description
Environmentally harmful byproducts from solid waste’s decomposition, including methane (CH4) emissions, are managed through standardized landfill engineering and gas-capture mechanisms. Yet only a limited number of studies have analyzed the development and composition of Bacteria and Archaea involved in CH4 production from landfills. The objectives of this research were to

Environmentally harmful byproducts from solid waste’s decomposition, including methane (CH4) emissions, are managed through standardized landfill engineering and gas-capture mechanisms. Yet only a limited number of studies have analyzed the development and composition of Bacteria and Archaea involved in CH4 production from landfills. The objectives of this research were to compare microbiomes and bioactivity from CH4-producing communities in contrasting spatial areas of arid landfills and to tests a new technology to biostimulate CH4 production (methanogenesis) from solid waste under dynamic environmental conditions controlled in the laboratory. My hypothesis was that the diversity and abundance of methanogenic Archaea in municipal solid waste (MSW), or its leachate, play an important role on CH4 production partially attributed to the group’s wide hydrogen (H2) consumption capabilities. I tested this hypothesis by conducting complementary field observations and laboratory experiments. I describe niches of methanogenic Archaea in MSW leachate across defined areas within a single landfill, while demonstrating functional H2-dependent activity. To alleviate limited H2 bioavailability encountered in-situ, I present biostimulant feasibility and proof-of-concepts studies through the amendment of zero valent metals (ZVMs). My results demonstrate that older-aged MSW was minimally biostimulated for greater CH4 production relative to a control when exposed to iron (Fe0) or manganese (Mn0), due to highly discernable traits of soluble carbon, nitrogen, and unidentified fluorophores found in water extracts between young and old aged, starting MSW. Acetate and inhibitory H2 partial pressures accumulated in microcosms containing old-aged MSW. In a final experiment, repeated amendments of ZVMs to MSW in a 600 day mesocosm experiment mediated significantly higher CH4 concentrations and yields during the first of three ZVM injections. Fe0 and Mn0 experimental treatments at mesocosm-scale also highlighted accelerated development of seemingly important, but elusive Archaea including Methanobacteriaceae, a methane-producing family that is found in diverse environments. Also, prokaryotic classes including Candidatus Bathyarchaeota, an uncultured group commonly found in carbon-rich ecosystems, and Clostridia; All three taxa I identified as highly predictive in the time-dependent progression of MSW decomposition. Altogether, my experiments demonstrate the importance of H2 bioavailability on CH4 production and the consistent development of Methanobacteriaceae in productive MSW microbiomes.
ContributorsReynolds, Mark Christian (Author) / Cadillo-Quiroz, Hinsby (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Wang, Xuan (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2022
158658-Thumbnail Image.png
Description
Background: Children’s fruit and vegetable consumption in the United States is lower than recommended. School lunch is an opportunity for students to be exposed to fruits and vegetables and potentially increase their daily intake. The purpose of this study is to examine the relationship between tray color and fruit and

Background: Children’s fruit and vegetable consumption in the United States is lower than recommended. School lunch is an opportunity for students to be exposed to fruits and vegetables and potentially increase their daily intake. The purpose of this study is to examine the relationship between tray color and fruit and vegetable selection, consumption, and waste at lunch.

Methods: Study participants (n=1469) were elementary and middle school students who ate school lunch on the day of data collection. Photographs and weights (to nearest 2 g) were taken of fruits and vegetables on students’ trays before and after lunch. Trained research assistants viewed photographs and sorted trays into variable categories: color of main tray, presence/absence of secondary fruit/vegetable container, and color of secondary fruit/vegetable container. Fruit and vegetable selection, consumption, and waste were calculated using tray weights. Negative binomial regression models adjusted for gender, grade level, race/ethnicity, free/reduced price lunch status, and within-school similarities were used to examine relationships between tray color and fruit and vegetable selection, consumption, and waste.

Results: Findings indicated that students with a light tray selected (IRR= 0.44), consumed (IRR=0.73) and wasted (IRR=0.81) less fruit and vegetables. Students without a secondary fruit/vegetable container selected (IRR=0.66) and consumed (IRR=0.49) less fruit and vegetables compared to those with a secondary container. Light or clear secondary fruit and vegetable containers were related to increased selection (IRR=2.06 light, 2.30 clear) and consumption (IRR=1.95 light, 2.78 clear) compared to dark secondary containers, while light secondary containers were related to decreased waste (IRR= 0.57).

Conclusion: Tray color may influence fruit and vegetable selection, consumption, and waste among students eating school lunch. Further research is needed to determine if there is a cause and effect relationship. If so, adjusting container colors may be a practical intervention for schools hoping to increase fruit and vegetable intake among students.
ContributorsWeight, Raquelle (Author) / Bruening, Meg (Thesis advisor) / Adams, Marc (Committee member) / Martinelli, Sarah (Committee member) / Arizona State University (Publisher)
Created2020