Matching Items (7)
Filtering by

Clear all filters

151362-Thumbnail Image.png
Description
Urban water systems face sustainability challenges ranging from water quality, leaks, over-use, energy consumption, and long-term supply concerns. Resiliency challenges include the capacity to respond to drought, managing pipe deterioration, responding to natural disasters, and preventing terrorism. One strategy to enhance sustainability and resiliency is the development and adoption of

Urban water systems face sustainability challenges ranging from water quality, leaks, over-use, energy consumption, and long-term supply concerns. Resiliency challenges include the capacity to respond to drought, managing pipe deterioration, responding to natural disasters, and preventing terrorism. One strategy to enhance sustainability and resiliency is the development and adoption of smart water grids. A smart water grid incorporates networked monitoring and control devices into its structure, which provides diverse, real-time information about the system, as well as enhanced control. Data provide input for modeling and analysis, which informs control decisions, allowing for improvement in sustainability and resiliency. While smart water grids hold much potential, there are also potential tradeoffs and adoption challenges. More publicly available cost-benefit analyses are needed, as well as system-level research and application, rather than the current focus on individual technologies. This thesis seeks to fill one of these gaps by analyzing the cost and environmental benefits of smart irrigation controllers. Smart irrigation controllers can save water by adapting watering schedules to climate and soil conditions. The potential benefit of smart irrigation controllers is particularly high in southwestern U.S. states, where the arid climate makes water scarcer and increases watering needs of landscapes. To inform the technology development process, a design for environment (DfE) method was developed, which overlays economic and environmental performance parameters under different operating conditions. This method is applied to characterize design goals for controller price and water savings that smart irrigation controllers must meet to yield life cycle carbon dioxide reductions and economic savings in southwestern U.S. states, accounting for regional variability in electricity and water prices and carbon overhead. Results from applying the model to smart irrigation controllers in the Southwest suggest that some areas are significantly easier to design for.
ContributorsMutchek, Michele (Author) / Allenby, Braden (Thesis advisor) / Williams, Eric (Committee member) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2012
156469-Thumbnail Image.png
Description
The 21st-century professional or knowledge worker spends much of the working day engaging others through electronic communication. The modes of communication available to knowledge workers have rapidly increased due to computerized technology advances: conference and video calls, instant messaging, e-mail, social media, podcasts, audio books, webinars, and much more. Professionals

The 21st-century professional or knowledge worker spends much of the working day engaging others through electronic communication. The modes of communication available to knowledge workers have rapidly increased due to computerized technology advances: conference and video calls, instant messaging, e-mail, social media, podcasts, audio books, webinars, and much more. Professionals who think for a living express feelings of stress about their ability to respond and fear missing critical tasks or information as they attempt to wade through all the electronic communication that floods their inboxes. Although many electronic communication tools compete for the attention of the contemporary knowledge worker, most professionals use an electronic personal information management (PIM) system, more commonly known as an e-mail application and often the ubiquitous Microsoft Outlook program. The aim of this research was to provide knowledge workers with solutions to manage the influx of electronic communication that arrives daily by studying the workers in their working environment. This dissertation represents a quest to understand the current strategies knowledge workers use to manage their e-mail, and if modification of e-mail management strategies can have an impact on productivity and stress levels for these professionals. Today’s knowledge workers rarely work entirely alone, justifying the importance of also exploring methods to improve electronic communications within teams.
ContributorsCounts, Virginia (Author) / Parrish, Kristen (Thesis advisor) / Allenby, Braden (Thesis advisor) / Landis, Amy (Committee member) / Cooke, Nancy J. (Committee member) / Arizona State University (Publisher)
Created2018
154957-Thumbnail Image.png
Description
Cities are, at once, a habitat for humans, a center of economic production, a direct consumer of natural resources in the local environment, and an indirect consumer of natural resources at regional, national, and global scales. These processes do not take place in isolation: rather they are nested within complex

Cities are, at once, a habitat for humans, a center of economic production, a direct consumer of natural resources in the local environment, and an indirect consumer of natural resources at regional, national, and global scales. These processes do not take place in isolation: rather they are nested within complex coupled natural-human (CNH) systems that have nearby and distant teleconnections. Infrastructure systems—roads, electrical grids, pipelines, damns, and aqueducts, to name a few—have been built to convey and store these resources from their point of origin to their point of consumption. Traditional hard infrastructure systems are complemented by soft infrastructure, such as governance, legal, economic, and social systems, which rely upon the conveyance of information and currency rather than a physical commodity, creating teleconnections that link multiple CNH systems. The underlying structure of these systems allows for the creation of novel network methodologies to study the interdependencies, feedbacks, and timescales between direct and indirect resource consumers and producers; to identify potential vulnerabilities within the system; and to model the configuration of ideal system states. Direct and indirect water consumption provides an ideal indicator for such study because water risk is highly location-based in terms of geography, climate, economics, and cultural norms and is manifest at multiple geographic scales. Taken together, the CNH formed by economic trade and indirect water exchange networks create hydro-economic networks. Given the importance of hydro-economic networks for human well-being and economic production, this dissertation answers the overarching research question: What information do we gain from analyzing virtual water trade at the systems level rather than the component city level? Three studies are presented with case studies pertaining to the State of Arizona. The first derives a robust methodology to disaggregate indirect water flows to subcounty geographies. The second creates city-level metrics of hydro-economic vulnerability and functional diversity. The third analyzes the physical, legal, and economic allocation of a shared river basin to identify vulnerable nodes in river basin hydro-economic networks. This dissertation contributes to the literature through the creation of novel metrics to measure hydro-economic network properties and to generate insight into potential US hydro-economic shocks.
ContributorsRushforth, Richard Ray (Author) / Ruddell, Benajmin L (Thesis advisor) / Allenby, Braden (Committee member) / Chester, Mikhail (Committee member) / Seager, Thomas (Committee member) / Arizona State University (Publisher)
Created2016
171569-Thumbnail Image.png
Description
This thesis examines the composition, flow rate, and recyclability of two abundant materials generated in modern society: municipal sewage sludge (SS) generated during conventional wastewater treatment, and single-use plastic packaging (specifically, plastic bottles) manufactured and dispersed by fast-moving consumer goods companies (FMCG). The study found the presence of 5 precious

This thesis examines the composition, flow rate, and recyclability of two abundant materials generated in modern society: municipal sewage sludge (SS) generated during conventional wastewater treatment, and single-use plastic packaging (specifically, plastic bottles) manufactured and dispersed by fast-moving consumer goods companies (FMCG). The study found the presence of 5 precious metals in both American and Chinese sewage sludges. 13 rare elements were found in American sewage sludge while 14 were found in Chinese sewage sludge. Modeling results indicated 251 to 282 million metric tons (MMT) of SS from 2022 to 2050, estimated to contain some 6.8 ± 0.5 MMT of valuable elements in the USA, the reclamation of which is valued at $24B ± $1.6B USD. China is predicted to produce between 819 - 910 MMT of SS between 2022 and 2050 containing an estimated 14.9 ± 1.7 MMT of valuable elements worth a cumulative amount of $94B ± 20B (Chapter 2 and 3). The 4th chapter modeled how much plastic waste Coca-Cola, PespiCo and Nestlé produced and globally dispersed in 21 years: namely an estimated 126 MMT ± 8.7 MMT of plastic. Some 15.6 MMT ± 1.3 MMT (12%) is projected to have become aquatic pollution costing estimated at $286B USD. Some 58 ± 5 MMT or 46% of the total mass were estimated to result in terrestrial plastic pollution, with only minor amounts of 9.9 ± 0.7 MMT, deemed actually recycled. Absent of change, the three companies are predicted to generate an additional 330 ± 15 MMT of plastic by 2050, thereby creating estimated externalities of $8 ± 0.4 trillion USD. The analysis suggests that a small subset of FMCG companies are well positioned to change the current trajectory of global plastic pollution and ocean plastic littering. Chapter 5 examined the barriers to Circular Economy. In an increasingly uncertain post pandemic world, it is becoming progressively important to conserve local resources and extract value from materials that are currently interpreted a “waste” rather than a current or potential future resource.
ContributorsBiyani, Nivedita (Author) / Halden, Rolf U. (Thesis advisor) / Allenby, Braden (Committee member) / Jalbert, Kirk (Committee member) / Arizona State University (Publisher)
Created2022
171699-Thumbnail Image.png
Description
Crises at Teton Dam in 1976, Roosevelt Dam in 1980, Tempe Town Lake Dam in 2010, Oroville Dam in 2017, and the Edenville and Sanford Dams in 2020 prove the substantial and continuing threats to communities posed by major dams. Sociotechnical systems of dams encompass both social or governance characteristics

Crises at Teton Dam in 1976, Roosevelt Dam in 1980, Tempe Town Lake Dam in 2010, Oroville Dam in 2017, and the Edenville and Sanford Dams in 2020 prove the substantial and continuing threats to communities posed by major dams. Sociotechnical systems of dams encompass both social or governance characteristics as well as the technical or architectural characteristics. To reduce or overcome chances of failure, experts traditionally focus on making the architectural characteristics of dams safe from potential modes of failure. However, governance characteristics such as laws, building codes, and emergency actions plans also affect the ability of systems of dams that include downstream communities to sustainably adapt to crises. Increasingly, emerging threats such as climate change, earthquakes, terrorism, cyberattacks, or wildfires worsen known modes of failure such as overtopping.Considering these emerging threats, my research assesses whether the architectural and governance characteristics of the aging population of systems of dams in the United States can sustainably adapt to challenges posed by emerging threats. First, by analyzing architectural characteristics of dams, my research provides a useful definition of infrastructures of dams. Next, to assess the governance characteristics of dams, I review institutional documents to heuristically outline seven sociotechnical imaginaries and assess whether an eighth based on resilience is appearing. Further, by analyzing interview transcripts and professional conference presentations, and by conducting case studies, my research reveals ways that experts and stakeholders assess the safety and resilience of systems of dams. The combined findings of these studies suggest that experts and stakeholders are not sufficiently informed about or focused upon important aspects of the resilience of dams. Therefore, they may not be able to sustainably adapt to crises caused or worsened by emerging threats such as climate change, earthquakes, terrorism, cyberattacks, or wildfires. I offer explanations of why this is so and formulate recommendations.
ContributorsDwyer, Kevin Thomas (Author) / Fisher, Erik (Thesis advisor) / Maynard, Andrew (Committee member) / Allenby, Braden (Committee member) / Arizona State University (Publisher)
Created2022
157905-Thumbnail Image.png
Description
Raising future generations is a culturally diverse, universally technological human project. This research brought the everyday work of raising children into the domain of sustainability scholarship, by first proposing a model of childrearing as a globally distributed socio-technical system, and then exploring the model with participants in two nodes –

Raising future generations is a culturally diverse, universally technological human project. This research brought the everyday work of raising children into the domain of sustainability scholarship, by first proposing a model of childrearing as a globally distributed socio-technical system, and then exploring the model with participants in two nodes – an elementary and middle school, and a children’s museum. In the process, the research objective shifted towards using methods that were less academic and more relevant to childrearing agents. The focus on participatory survey data was abandoned, in favor of autoethnographic documentation of a long-term engagement with a third node of the system, a child welfare setting. This approach yielded unexpected findings that fit the proposed model, identified characteristics of a Zone of Mutual Oblivion (ZMO) that exists between childrearing and sustainability, and clarified ways in which people prioritize their own needs and responsibilities, the developmental needs of children, the potential needs and capacities of future generations, and the functional integrity of ecological systems.
ContributorsCazel-Jahn, Angela (Author) / Blue Swadener, Elizabeth (Thesis advisor) / Allenby, Braden (Committee member) / Lobo, Jose (Committee member) / Arizona State University (Publisher)
Created2019
132259-Thumbnail Image.png
Description
There are two main motivations for conducting this analysis. The first motivation is to understand the Social Credit System (SCS) itself: what it is, why it’s being developed, and what implications it may have for China and the rest of the world. The Social Credit System is a novel idea—it’s

There are two main motivations for conducting this analysis. The first motivation is to understand the Social Credit System (SCS) itself: what it is, why it’s being developed, and what implications it may have for China and the rest of the world. The Social Credit System is a novel idea—it’s the first ever use of AI and machine learning technology by a government for the purposes of social engineering. The long-term consequences of this technology will have a monumental impact on the Chinese peoples’ well-being. Potential implications of the system range from impacts on privacy and activism to whether other countries are inspired to develop a similar technology. There are also many different implementations for this system, each with its own outcome. This system is a consequence of the increasing capabilities of technology and an experimental approach influenced heavily by China’s culture and history, which leads to the second motivation.
Confucianism’s historical influence on China’s culture has made the Social Credit System seem like a good solution to many of China’s major societal problems. As such, the second motivation is to evaluate the impact Confucianism has on the development of the system; this involves understanding what Confucianism is, identifying parallels between it and the SCS, and analyzing how it may affect the Chinese people reaction to a full-fledged SCS. Understanding Confucianism may also illuminate why the government believes this is a good idea, what direction it may want to take this, and what boundaries, if any, the Chinese citizens have. We chose to analyze the SCS from a Confucian perspective because it has played a large role in influencing Chinese culture and history for over 2000 years. The Chinese people have been especially drawn to it in recent years due to increasing corruption, increasing inequality, decreasing trust, and increased social instability.
Although Confucianism may have a significant influence on the development of the SCS, there are also other influences in the mix. One of these influences is China’s AI competition with the US; relaxing privacy protections has given China an enormous amount of data to feed its AI. This system is also another avenue for China to develop their algorithms. There are also the motivations of the Communist party of China. These motivations include market reform, governmental reform, authoritarian interests and bureaucratic interests.
ContributorsRavi, Markanday (Author) / Allenby, Braden (Thesis director) / Kubiak, Jeffrey (Committee member) / Watts College of Public Service & Community Solut (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05