Matching Items (13)
Filtering by

Clear all filters

Description
iWaandr is a travel platform that allows users to find and share unique experiences. It will be a website that users can find on the internet. Every user will be able to post their own experiences on the platform along with a description, important information, and a rating.

iWaandr is a travel platform that allows users to find and share unique experiences. It will be a website that users can find on the internet. Every user will be able to post their own experiences on the platform along with a description, important information, and a rating.
The problem we are trying to solve is that it still takes hours to search for and find unique non-touristy experiences around the world. At a time when people can use their smartphones to have a car show up to their doorstep in minutes, it is unacceptable that it still takes hours to find an non-touristy experience on the internet.
Our value proposition is that users will be able to be anywhere in the world and be able to find an authentic, non-touristy experience that interests them. iWaandr is the most complete experience discovery tool, providing the largest collection of unique and personal experiences around the world.
Our competition is the large incumbent travel and review companies like TripAdvisor and Airbnb. There are also less established competitors that see a similar gap in the market like Mapify and Cool Cousin. We also have niche competitors that are only focused on outdoor activities like AllTrails and Outbound Collective. Google and blogs would also be competitors because people search on Google for unique experiences.
Our innovation is that we are focusing on creating unique content while our competitors are focusing on new ways to display the same content. Our advantage isn’t in a feature we created because a company with more resources could easily copy it. In order to create unique and useful content, we had to figure out a way for users to intuitively and easily post an experience with as much relevant information as possible. This involved a lot of thought into our posting process. We believe our posting process allows users to consistently post unique and informative content.
The technology we are implementing is very similar to the FERN technology stack of Firebase as a database, ExpressJS and NodeJS as backend frameworks, and ReactJS as the front-end programming language. We chose this technology stack because it allows our platform to stay lean, and be efficient with data. This allows the platform to have increased performance and lower costs.
ContributorsChee, Christian Yoshiaki (Co-author) / Bingham, Joseph (Co-author) / Cho, Steve (Thesis director) / Witwer, Bob (Committee member) / Tech Entrepreneurship & Mgmt (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134802-Thumbnail Image.png
Description
Three dimensional printing is a growing field and an excellent medium for rapid prototyping. Its expansion has accelerated over recent years due to the increased affordability of the technology. It is now at the point where the startup cost to get into the field is down to the hobbyist price

Three dimensional printing is a growing field and an excellent medium for rapid prototyping. Its expansion has accelerated over recent years due to the increased affordability of the technology. It is now at the point where the startup cost to get into the field is down to the hobbyist price point. This means that there is an extremely high demand for affordable printing media. Current media such as ABS and PLA is extremely easy to form, but expensive and petroleum intensive to create. A recycling system that could work with a large variety of waste products could change the way that the maker community recycles. This Honors Thesis, or "Creative Project" will be centered on the product launch of small business 3DCycler. Although this launch will require pulling information and skills from various branches of both Business and Science, the scope of this project will be limited to specifically the market entrance of our small business/ product. Within this blanket goal, the project aims to define our target market/ its niche(s), develop proper IP/ lockout strategies, define future manufacturing strategies, and to fully define our beta product. The research was empirical in nature. Through data gathering techniques (e.g., consultations, interviews, survey), exploration was performed. Through these techniques the company 3DCycler took several calculated pivots in order to prepare the company for a strategic product launch and eventual acquisition.
ContributorsFarber-Schaefer, Blaine (Author) / Cho, Steve (Thesis director) / Goodman, Tom (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description

Human beings have long sought to conquer the unconquerable and to push the boundaries of human endurance. There are few such endeavors more challenging than venturing into the coldest and harshest environments on the planet. The challenges these adventurers face are nearly countless, but one that is often underestimated is

Human beings have long sought to conquer the unconquerable and to push the boundaries of human endurance. There are few such endeavors more challenging than venturing into the coldest and harshest environments on the planet. The challenges these adventurers face are nearly countless, but one that is often underestimated is the massive risk of dehydration in high mountains and the lack of sufficient technology to meet this important need. Astronauts and mountaineers of NASA's Johnson Space Center have created a technology that solves this problem: a freeze-resistant hydration system that helps stop water from freezing at sub-zero temperatures by using cutting-edge technology and materials science to insulate and heat enough water to prevent dehydration over the course of the day, so that adventurers no longer need to worry about their equipment stopping them. This patented technology is the basis of the founding of Aeropak, an advanced outdoor hydration brand developed by three ASU students (Kendall Robinson, Derek Stein, and Thomas Goers) in collaboration with W.P. Carey’s Founder’s Lab. The primary goal was to develop traction among winter sport enthusiasts to create a robust customer base and evaluate the potential for partnership with hydration solution companies as well as direct sales through online and brick-and-mortar retail avenues. To this end, the Aeropak team performed market research to determine the usefulness and need for the product through a survey sent out to a number of outdoor sporting clubs on Arizona State University’s campus. After determining an interest in a potential product, the team developed a marketing strategy and business model which was executed through Instagram as well as a standalone website, with the goal of garnering interest and traction for a future product. Future goals of the project will be to bring a product to market and expand Aeropak’s reach into a variety of winter sport subcommunities, as well as evaluate the potential for further expansion into large-scale retailers and collaboration with established companies.

ContributorsStein, Derek W (Co-author) / Robinson, Kendall (Co-author) / Goers, Thomas (Co-author) / Byrne, Jared (Thesis director) / Sebold, Brent (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148055-Thumbnail Image.png
Description

A large section of United States citizens live far away from supermarkets and do not have<br/>an easy way to get to one. This portion of the population lives in an area called a food desert.<br/>Food deserts are geographic areas in which access to affordable, healthy food, such as fresh<br/>produce, is

A large section of United States citizens live far away from supermarkets and do not have<br/>an easy way to get to one. This portion of the population lives in an area called a food desert.<br/>Food deserts are geographic areas in which access to affordable, healthy food, such as fresh<br/>produce, is limited or completely nonexistent due to the absence of convenient grocery stores.<br/>Individuals living in food deserts are left to rely on convenience store snacks and fast food for<br/>their meals because they do not have access to a grocery store with fresh produce in their area.<br/>Unhealthy foods also lead to health issues, as people living in food deserts are typically at a<br/>higher risk of diet-related conditions, such as obesity, diabetes, and cardiovascular disease.<br/>Harvest, a sustainable farming network, is a smartphone application that teaches and guides<br/>people living in small spaces through the process of growing fresh, nutritious produce in their<br/>own homes. The app will guide users through the entire process of gardening, from seed to<br/>harvest. Harvest would give individuals living in food deserts an opportunity to access fresh<br/>produce that they currently can’t access. An overwhelming response based on our user<br/>discussion and market analysis revealed that our platform was in demand. Development of a<br/>target market, brand guide, and full lifecycle were beneficial during the second semester as<br/>Harvest moved forward. Through the development of a website, social media platform, and<br/>smartphone application, Harvest grew traction for our platform. Our social media accounts saw a<br/>1700% growth rate, and this wider audience was able to provide helpful feedback.

ContributorsBalamut, Hannah (Co-author) / Raimondo, Felix (Co-author) / Tobey, Anna (Co-author) / Byrne, Jared (Thesis director) / Satpathy, Asish (Committee member) / Morrison School of Agribusiness (Contributor) / Department of Marketing (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148056-Thumbnail Image.png
Description

A large section of United States citizens live far away from supermarkets and do not have an easy way to get to one. This portion of the population lives in an area called a food desert. Food deserts are geographic areas in which access to affordable, healthy food, such as

A large section of United States citizens live far away from supermarkets and do not have an easy way to get to one. This portion of the population lives in an area called a food desert. Food deserts are geographic areas in which access to affordable, healthy food, such as fresh produce, is limited or completely nonexistent due to the absence of convenient grocery stores. Individuals living in food deserts are left to rely on convenience store snacks and fast food for their meals because they do not have access to a grocery store with fresh produce in their area. Unhealthy foods also lead to health issues, as people living in food deserts are typically at a higher risk of diet-related conditions, such as obesity, diabetes, and cardiovascular disease. Harvest, a sustainable farming network, is a smartphone application that teaches and guides people living in small spaces through the process of growing fresh, nutritious produce in their own homes. The app will guide users through the entire process of gardening, from seed to harvest. Harvest would give individuals living in food deserts an opportunity to access fresh produce that they currently can’t access. An overwhelming response based on our user discussion and market analysis revealed that our platform was in demand. Development of a target market, brand guide, and full-lifecycle were beneficial during the second semester as Harvest moved forward. Through the development of a website, social media platform, and smartphone application, Harvest grew traction for our platform. Our social media accounts saw a 1700% growth rate, and this wider audience was able to provide helpful feedback.

ContributorsTobey, Anna Elisabeth (Co-author) / Raimondo, Felix (Co-author) / Balamut, Hannah (Co-author) / Byrne, Jared (Thesis director) / Givens, Jessica (Committee member) / Satpathy, Asish (Committee member) / School of Life Sciences (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148058-Thumbnail Image.png
Description

A large section of United States citizens live far away from supermarkets and do not have an easy way to get to one. This portion of the population lives in an area called a food desert. Food deserts are geographic areas in which access to affordable, healthy food, such as

A large section of United States citizens live far away from supermarkets and do not have an easy way to get to one. This portion of the population lives in an area called a food desert. Food deserts are geographic areas in which access to affordable, healthy food, such as fresh produce, is limited or completely nonexistent due to the absence of convenient grocery stores. Individuals living in food deserts are left to rely on convenience store snacks and fast food for their meals because they do not have access to a grocery store with fresh produce in their area. Unhealthy foods also lead to health issues, as people living in food deserts are typically at a higher risk of diet-related conditions, such as obesity, diabetes, and cardiovascular disease. Harvest, a sustainable farming network, is a smartphone application that teaches and guides people living in small spaces through the process of growing fresh, nutritious produce in their own homes. The app will guide users through the entire process of gardening, from seed to harvest. Harvest would give individuals living in food deserts an opportunity to access fresh produce that they currently can’t access. An overwhelming response based on our user discussion and market analysis revealed that our platform was in demand. Development of a target market, brand guide, and full lifecycle were beneficial during the second semester as Harvest moved forward. Through the development of a website, social media platform, and smartphone application, Harvest grew traction for our platform. Our social media accounts saw a 1700% growth rate, and this wider audience was able to provide helpful feedback.

ContributorsRaimondo, Felix Ryan (Co-author) / Tobey, Anna (Co-author) / Balahmut, Hannah (Co-author) / Byrne, Jared (Thesis director) / Satpathy, Asish (Committee member) / Human Systems Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

As part of the Founders’ lab program, this thesis explores a social venture idea whose concept is to connect the philanthropic community with individuals and organizations in need of funding a project relating to (Sustainable Development Goals) SDG indicators through a peer to peer donation platform. Through this platform, the

As part of the Founders’ lab program, this thesis explores a social venture idea whose concept is to connect the philanthropic community with individuals and organizations in need of funding a project relating to (Sustainable Development Goals) SDG indicators through a peer to peer donation platform. Through this platform, the philanthropic community will have the possibility to easily access a wide range of projects to support as well as underserved individuals and communities seeking for help, track their impact, donate in a complete transparent donation process, and automate donations through bank card rounds-up. This social venture idea has been named PhilanthroGo.

ContributorsFrank, Gregory Keith (Co-author) / Boeh, Morgan (Co-author) / Veal, Hayley (Co-author) / Byrne, Jared (Thesis director) / Givens, Jessica (Committee member) / Satpathy, Asish (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147852-Thumbnail Image.png
Description

In the preface to On War, Clausewitz describes his work as a series of loosely connected pure nuggets of knowledge. He then states his hope that his nuggets would eventually be connected and consolidated into what he calls a “final casting without dross”. It is the goal of this work

In the preface to On War, Clausewitz describes his work as a series of loosely connected pure nuggets of knowledge. He then states his hope that his nuggets would eventually be connected and consolidated into what he calls a “final casting without dross”. It is the goal of this work to begin that consolidation and take steps towards a final casting and a more comprehensive understanding of war, combining Clausewitz’s models with modern findings not available at the time of On War’s conception. Using Clausewitz’s combat equation as a foundation for a framework on the nature of war, this work will synthesize many of On War’s central concepts, while also expanding upon the terms and mechanics presented in Book One. It is hoped that the resulting model will combine the best of Clausewitz’s findings in a way that makes the sum of the parts greater than the whole, and allows previous findings which were isolated to a particular silo of study to be cross examined for exponential application to the study of war. This may in due time, with additional contributions, result in the ever desired revolution in military affairs and enhance the military sciences for years to come.

ContributorsKovan, Joshua (Author) / Kubiak, Jeffrey (Thesis director) / Cho, Steve (Committee member) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147829-Thumbnail Image.png
Description

Our team was tasked with creating a business model for a piece of technology developed by NASA. We then had to launch said business and find a way to measure its traction in a specific niche market.

ContributorsBrinson, Stacy Laree (Co-author) / Shapiro, Dylan (Co-author) / Byrne, Jared (Thesis director) / Patel, Manish (Committee member) / Walter Cronkite School of Journalism and Mass Comm (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131181-Thumbnail Image.png
Description
The Founders Lab Thesis tasked each team with taking an idea and trying to form a business out of it. In the process, the thesis director would be there to guide each team and provide expertise where needed. The venture that was assigned originally to our team was a posture

The Founders Lab Thesis tasked each team with taking an idea and trying to form a business out of it. In the process, the thesis director would be there to guide each team and provide expertise where needed. The venture that was assigned originally to our team was a posture correcting device, however after numerous attempts to correspond reliably with the developers of this technology, it was decided that the team should move on to a new idea. Therefore, our team took on a venture named Altion Security: an initiative with the main goal being the safekeeping of customers interests. The product that we were tasked with is a bike alarm that simply rings out when it detects someone tampering with it. This product is a solution to the problem of bike thefts. 2 million bikes are stolen each year in North America, which translates roughly to a theft every 30 seconds (Project 529).
There are quite a few readily available products that one can buy if one looks past some of their flaws. A lot of these alarms either require a user to carry an extra communication device, or they are too big or expensive. The proposed solution merges all desirable features of a bike alarm into one module. In light of this, surveys were conducted to ascertain what these qualities would need to be. The top considerations for purchasing this alarm were how costly it would be, the false detection rate, and also the battery life. Additionally, the features that were most requested was the inclusion of a GPS and a camera. In order to incorporate these features, a three year plan was formulated which would culminate into a bike network in which each bike could communicate with other bikes. This would allow for an IOT network to be established, thus far exceeding expectations. The price point for this alarm is USD $10.00-15.00 and can come in a variety of colors. Additionally, this concept can be applied to many different scenarios, from protecting boats/jet skis and other aquatic vehicles, to houses as well. Furthermore, one could miniaturize this technology to be used in jewelry or accessories.
ContributorsOgunmefun, Adeoluwa (Co-author) / Gong, Alan (Co-author) / Parra, Rocio Ivette (Co-author) / Byrne, Jared (Thesis director) / Sebold, Brent (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05