Matching Items (29)
Filtering by

Clear all filters

148121-Thumbnail Image.png
Description

This thesis proposes hardware and software security enhancements to the robotic explorer of a capstone team, in collaboration with the NASA Psyche Mission Student Collaborations program. The NASA Psyche Mission, launching in 2022 and reaching the metallic asteroid of the same name in 2026, will explore from orbit what is

This thesis proposes hardware and software security enhancements to the robotic explorer of a capstone team, in collaboration with the NASA Psyche Mission Student Collaborations program. The NASA Psyche Mission, launching in 2022 and reaching the metallic asteroid of the same name in 2026, will explore from orbit what is hypothesized to be remnant core material of an early planet, potentially providing key insights to planet formation. Following this initial mission, it is possible there would be scientists and engineers interested in proposing a mission to land an explorer on the surface of Psyche to further document various properties of the asteroid. As a proposal for a second mission, an interdisciplinary engineering and science capstone team at Arizona State University designed and constructed a robotic explorer for the hypothesized surfaces of Psyche, capable of semi-autonomously navigating simulated surfaces to collect scientific data from onboard sensors. A critical component of this explorer is the command and data handling subsystem, and as such, the security of this system, though outside the scope of the capstone project, remains a crucial consideration. This thesis proposes the pairing of Trusted Platform Module (TPM) technology for increased hardware security and the implementation of SELinux (Security Enhanced Linux) for increased software security for Earth-based testing as well as space-ready missions.

ContributorsAnderson, Kelly Joanne (Author) / Bowman, Catherine (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148017-Thumbnail Image.png
Description

Generating an astounding $110.7 billion annually in domestic revenue alone [1], the world of accounting is one deceptively lacking automation of its most business-critical processes. While accounting tools do exist for the common person, especially when it is time to pay their taxes, such innovations scarcely exist for many larger

Generating an astounding $110.7 billion annually in domestic revenue alone [1], the world of accounting is one deceptively lacking automation of its most business-critical processes. While accounting tools do exist for the common person, especially when it is time to pay their taxes, such innovations scarcely exist for many larger industrial tasks. Exceedingly common business events, such as Business Combinations, are surprisingly manual tasks despite their $1.1 trillion valuation in 2020 [2]. This work presents the twin accounting solutions TurboGAAP and TurboIFRS: an unprecedented leap into these murky waters in an attempt to automate and streamline these gigantic accounting tasks once entrusted only to teams of experienced accountants.
A first-to-market approach to a trillion-dollar problem, TurboGAAP and TurboIFRS are the answers for years of demands from the accounting sector that established corporations have never solved.

ContributorsKuhler, Madison Frances (Co-author) / Capuano, Bailey (Co-author) / Preston, Michael (Co-author) / Chen, Yinong (Thesis director) / Hunt, Neil (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148037-Thumbnail Image.png
Description

"Generating an astounding $110.7 billion annually in domestic revenue alone [1], the world of accounting is one deceptively lacking automation of its most business-critical processes. While accounting tools do exist for the common person, especially when it is time to pay their taxes, such innovations scarcely exist for many larger

"Generating an astounding $110.7 billion annually in domestic revenue alone [1], the world of accounting is one deceptively lacking automation of its most business-critical processes. While accounting tools do exist for the common person, especially when it is time to pay their taxes, such innovations scarcely exist for many larger industrial tasks. Exceedingly common business events, such as Business Combinations, are surprisingly manual tasks despite their $1.1 trillion valuation in 2020 [2]. This work presents the twin accounting solutions TurboGAAP and TurboIFRS: an unprecedented leap into these murky waters in an attempt to automate and streamline these gigantic accounting tasks once entrusted only to teams of experienced accountants.
A first-to-market approach to a trillion-dollar problem, TurboGAAP and TurboIFRS are the answers for years of demands from the accounting sector that established corporations have never solved."

ContributorsCapuano, Bailey Kellen (Co-author) / Preston, Michael (Co-author) / Kuhler, Madison (Co-author) / Chen, Yinong (Thesis director) / Hunt, Neil (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148059-Thumbnail Image.png
Description

Generating an astounding $110.7 billion annually in domestic revenue alone [1], the world of accounting is one deceptively lacking automation of its most business-critical processes. While accounting tools do exist for the common person, especially when it is time to pay their taxes, such innovations scarcely exist for many larger

Generating an astounding $110.7 billion annually in domestic revenue alone [1], the world of accounting is one deceptively lacking automation of its most business-critical processes. While accounting tools do exist for the common person, especially when it is time to pay their taxes, such innovations scarcely exist for many larger industrial tasks. Exceedingly common business events, such as Business Combinations, are surprisingly manual tasks despite their $1.1 trillion valuation in 2020 [2]. This work presents the twin accounting solutions TurboGAAP and TurboIFRS: an unprecedented leap into these murky waters in an attempt to automate and streamline these gigantic accounting tasks once entrusted only to teams of experienced accountants.
A first-to-market approach to a trillion-dollar problem, TurboGAAP and TurboIFRS are the answers for years of demands from the accounting sector that established corporations have never solved.

ContributorsPreston, Michael Ernest (Co-author) / Capuano, Bailey (Co-author) / Kuhler, Madison (Co-author) / Chen, Yinong (Thesis director) / Hunt, Neil (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148195-Thumbnail Image.png
Description

The colossal global counterfeit market and advances in cryptography including quantum computing supremacy have led the drive for a class of anti-counterfeit tags that are physically unclonable. Dendrites, previously considered an undesirable side effect of battery operation, have promise as an extremely versatile version of such tags, with their fundamental

The colossal global counterfeit market and advances in cryptography including quantum computing supremacy have led the drive for a class of anti-counterfeit tags that are physically unclonable. Dendrites, previously considered an undesirable side effect of battery operation, have promise as an extremely versatile version of such tags, with their fundamental nature ensuring that no two dendrites are alike and that they can be read at multiple magnification scales. In this work, we first pursue a simulation for electrochemical dendrites that elucidates fundamental information about their growth mechanism. We then translate these results into physical dendrites and demonstrate methods of producing a hash from these dendrites that is damage-tolerant for real-world verification. Finally, we explore theoretical curiosities that arise from the fractal nature of dendrites. We find that uniquely ramified dendrites, which rely on lower ion mobility and conductive deposition, are particularly amenable to wavelet hashing, and demonstrate that these dendrites have strong commercial potential for securing supply chains at the highest level while maintaining a low price point.

ContributorsSneh, Tal (Author) / Kozicki, Michael (Thesis director) / Gonzalez-Velo, Yago (Committee member) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
150219-Thumbnail Image.png
Description
Micro-electro-mechanical systems (MEMS) film bulk acoustic resonator (FBAR) demonstrates label-free biosensing capabilities and is considered to be a promising alternative of quartz crystal microbalance (QCM). FBARs achieve great success in vacuum, or in the air, but find limited applications in liquid media because squeeze damping significantly degrades quality factor (Q)

Micro-electro-mechanical systems (MEMS) film bulk acoustic resonator (FBAR) demonstrates label-free biosensing capabilities and is considered to be a promising alternative of quartz crystal microbalance (QCM). FBARs achieve great success in vacuum, or in the air, but find limited applications in liquid media because squeeze damping significantly degrades quality factor (Q) and results in poor frequency resolution. A transmission-line model shows that by confining the liquid in a thickness comparable to the acoustic wavelength of the resonator, Q can be considerably improved. The devices exhibit damped oscillatory patterns of Q as the liquid thickness varies. Q assumes its maxima and minima when the channel thickness is an odd and even multiple of the quarter-wavelength of the resonance, respectively. Microfluidic channels are integrated with longitudinal-mode FBARs (L-FBARs) to realize this design; a tenfold improvement of Q over fully-immersed devices is experimentally verified. Microfluidic integrated FBAR sensors have been demonstrated for detecting protein binding in liquid and monitoring the Vroman effect (the competitive protein adsorption behavior), showing their potential as a promising bio-analytical tool. A contour-mode FBAR (C-FBAR) is developed to further improve Q and to alleviate the need for complex integration of microfluidic channels. The C-FBAR consists of a suspended piezoelectric ring made of aluminum nitride and is excited in the fundamental radial-extensional mode. By replacing the squeeze damping with shear damping, high Qs (189 in water and 77 in human whole blood) are obtained in semi-infinite depth liquids. The C-FBAR sensors are characterized by aptamer - thrombin binding pairs and aqueous glycerine solutions for mass and viscosity sensing schemes, respectively. The C-FBAR sensor demonstrates accurate viscosity measurement from 1 to 10 centipoise, and can be deployed to monitor in-vitro blood coagulation processes in real time. Results show that its resonant frequency decreases as the viscosity of the blood increases during the fibrin generation process after the coagulation cascade. The coagulation time and the start/end of the fibrin generation are quantitatively determined, showing the C-FBAR can be a low-cost, portable yet reliable tool for hemostasis diagnostics.
ContributorsXu, Wencheng (Author) / Chae, Junseok (Thesis advisor) / Phillips, Stephen (Committee member) / Cao, Yu (Committee member) / Kozicki, Michael (Committee member) / Arizona State University (Publisher)
Created2011
135654-Thumbnail Image.png
Description
Company X has developed RealSenseTM technology, a depth sensing camera that provides machines the ability to capture three-dimensional spaces along with motion within these spaces. The goal of RealSense was to give machines human-like senses, such as knowing how far away objects are and perceiving the surrounding environment. The key

Company X has developed RealSenseTM technology, a depth sensing camera that provides machines the ability to capture three-dimensional spaces along with motion within these spaces. The goal of RealSense was to give machines human-like senses, such as knowing how far away objects are and perceiving the surrounding environment. The key issue for Company X is how to commercialize RealSense's depth recognition capabilities. This thesis addresses the problem by examining which markets to address and how to monetize this technology. The first part of the analysis identified potential markets for RealSense. This was achieved by evaluating current markets that could benefit from the camera's gesture recognition, 3D scanning, and depth sensing abilities. After identifying seven industries where RealSense could add value, a model of the available, addressable, and obtainable market sizes was developed for each segment. Key competitors and market dynamics were used to estimate the portion of the market that Company X could capture. These models provided a forecast of the discounted gross profits that could be earned over the next five years. These forecasted gross profits, combined with an examination of the competitive landscape and synergistic opportunities, resulted in the selection of the three segments thought to be most profitable to Company X. These segments are smart home, consumer drones, and automotive. The final part of the analysis investigated entrance strategies. Company X's competitive advantages in each space were found by examining the competition, both for the RealSense camera in general and other technologies specific to each industry. Finally, ideas about ways to monetize RealSense were developed by exploring various revenue models and channels.
ContributorsDunn, Nicole (Co-author) / Boudreau, Thomas (Co-author) / Kinzy, Chris (Co-author) / Radigan, Thomas (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / WPC Graduate Programs (Contributor) / Department of Psychology (Contributor) / Department of Finance (Contributor) / School of Accountancy (Contributor) / Department of Economics (Contributor) / School of Mathematical and Statistical Science (Contributor) / W. P. Carey School of Business (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135955-Thumbnail Image.png
Description
Instead of providing the illusion of agency to a reader via a tree or network of prewritten, branching paths, an interactive story should treat the reader as a player who has meaningful influence on the story. An interactive story can accomplish this task by giving the player a large toolset

Instead of providing the illusion of agency to a reader via a tree or network of prewritten, branching paths, an interactive story should treat the reader as a player who has meaningful influence on the story. An interactive story can accomplish this task by giving the player a large toolset for expression in the plot. LudoNarrare, an engine for interactive storytelling, puts "verbs" in this toolset. Verbs are contextual choices of action given to agents in a story that result in narrative events. This paper begins with an analysis and statement of the problem of creating interactive stories. From here, various attempts to solve this problem, ranging from commercial video games to academic research, are given a brief overview to give context to what paths have already been forged. With the background set, the model of interactive storytelling that the research behind LudoNarrare led to is exposed in detail. The section exploring this model contains explanations on what storyworlds are and how they are structured. It then discusses the way these storyworlds can be brought to life. The exposition on the LudoNarrare model finally wraps up by considering the way storyworlds created around this model can be designed. After the concepts of LudoNarrare are explored in the abstract, the story of the engine's research and development and the specifics of its software implementation are given. With LudoNarrare fully explained, the focus then turns to plans for evaluation of its quality in terms of entertainment value, robustness, and performance. To conclude, possible further paths of investigation for LudoNarrare and its model of interactive storytelling are proposed to inspire those who wish to continue in the spirit of the project.
ContributorsStark, Joshua Matthew (Author) / VanLehn, Kurt (Thesis director) / Wetzel, Jon (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
148467-Thumbnail Image.png
Description

This creative project is an extension of the work being done as part of Senior Design in<br/>developing the See-Through Car Pillar, a system designed to render the forward car pillars in a car<br/>invisible to the driver so they can have an unobstructed view utilizing displays, sensors, and a<br/>computer. The first

This creative project is an extension of the work being done as part of Senior Design in<br/>developing the See-Through Car Pillar, a system designed to render the forward car pillars in a car<br/>invisible to the driver so they can have an unobstructed view utilizing displays, sensors, and a<br/>computer. The first half of the paper provides the motivation, design and progress of the project, <br/>while the latter half provides a literature survey on current automobile trends, the viability of the<br/>See-Through Car Pillar as a product in the market through case studies, and alternative designs and <br/>technologies that also might address the problem statement.

ContributorsRoy, Delwyn J (Author) / Thornton, Trevor (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
135678-Thumbnail Image.png
Description
The constant evolution of technology has greatly shifted the way in which we gain knowledge information. This, in turn, has an affect on how we learn. Long gone are the days where students sit in libraries for hours flipping through numerous books to find one specific piece of information. With

The constant evolution of technology has greatly shifted the way in which we gain knowledge information. This, in turn, has an affect on how we learn. Long gone are the days where students sit in libraries for hours flipping through numerous books to find one specific piece of information. With the advent of Google, modern day students are able to arrive at the same information within 15 seconds. This technology, the internet, is reshaping the way we learn. As a result, the academic integrity policies that are set forth at the college level seem to be outdated, often prohibiting the use of technology as a resource for learning. The purpose of this paper is to explore why exactly these resources are prohibited. By contrasting a subject such as Computer Science with the Humanities, the paper explores the need for the internet as a resource in some fields as opposed to others. Taking a look at the knowledge presented in Computer Science, the course structure, and the role that professors play in teaching this knowledge, this thesis evaluates the epistemology of Engineering subjects. By juxtaposing Computer Science with the less technology reliant humanities subjects, it is clear that one common policy outlining academic integrity does not suffice for an entire university. Instead, there should be amendments made to the policy specific to each subject, in order to best foster an environment of learning at the university level. In conclusion of this thesis, Arizona State University's Academic Integrity Policy is analyzed and suggestions are made to remove ambiguity in the language of the document, in order to promote learning at the university.
ContributorsMohan, Sishir Basavapatna (Author) / Brake, Elizabeth (Thesis director) / Martin, William (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05