Matching Items (287)
Filtering by

Clear all filters

148105-Thumbnail Image.png
Description

In this creative thesis project I use digital “scrolleytelling” (an interactive scroll-based storytelling) to investigate diversity & inclusion at big tech companies. I wanted to know why diversity numbers were flatlining at Facebook, Apple, Amazon, Microsoft and Google, and took a data journalism approach to explore the relationship between what

In this creative thesis project I use digital “scrolleytelling” (an interactive scroll-based storytelling) to investigate diversity & inclusion at big tech companies. I wanted to know why diversity numbers were flatlining at Facebook, Apple, Amazon, Microsoft and Google, and took a data journalism approach to explore the relationship between what corporations were saying versus what they were doing. Finally, I critiqued diversity and inclusion by giving examples of how the current way we are addressing D&I is not fixing the problem.

ContributorsBrust, Jiaying Eliza (Author) / Coleman, Grisha (Thesis director) / Tinapple, David (Committee member) / Arts, Media and Engineering Sch T (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148121-Thumbnail Image.png
Description

This thesis proposes hardware and software security enhancements to the robotic explorer of a capstone team, in collaboration with the NASA Psyche Mission Student Collaborations program. The NASA Psyche Mission, launching in 2022 and reaching the metallic asteroid of the same name in 2026, will explore from orbit what is

This thesis proposes hardware and software security enhancements to the robotic explorer of a capstone team, in collaboration with the NASA Psyche Mission Student Collaborations program. The NASA Psyche Mission, launching in 2022 and reaching the metallic asteroid of the same name in 2026, will explore from orbit what is hypothesized to be remnant core material of an early planet, potentially providing key insights to planet formation. Following this initial mission, it is possible there would be scientists and engineers interested in proposing a mission to land an explorer on the surface of Psyche to further document various properties of the asteroid. As a proposal for a second mission, an interdisciplinary engineering and science capstone team at Arizona State University designed and constructed a robotic explorer for the hypothesized surfaces of Psyche, capable of semi-autonomously navigating simulated surfaces to collect scientific data from onboard sensors. A critical component of this explorer is the command and data handling subsystem, and as such, the security of this system, though outside the scope of the capstone project, remains a crucial consideration. This thesis proposes the pairing of Trusted Platform Module (TPM) technology for increased hardware security and the implementation of SELinux (Security Enhanced Linux) for increased software security for Earth-based testing as well as space-ready missions.

ContributorsAnderson, Kelly Joanne (Author) / Bowman, Catherine (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148017-Thumbnail Image.png
Description

Generating an astounding $110.7 billion annually in domestic revenue alone [1], the world of accounting is one deceptively lacking automation of its most business-critical processes. While accounting tools do exist for the common person, especially when it is time to pay their taxes, such innovations scarcely exist for many larger

Generating an astounding $110.7 billion annually in domestic revenue alone [1], the world of accounting is one deceptively lacking automation of its most business-critical processes. While accounting tools do exist for the common person, especially when it is time to pay their taxes, such innovations scarcely exist for many larger industrial tasks. Exceedingly common business events, such as Business Combinations, are surprisingly manual tasks despite their $1.1 trillion valuation in 2020 [2]. This work presents the twin accounting solutions TurboGAAP and TurboIFRS: an unprecedented leap into these murky waters in an attempt to automate and streamline these gigantic accounting tasks once entrusted only to teams of experienced accountants.
A first-to-market approach to a trillion-dollar problem, TurboGAAP and TurboIFRS are the answers for years of demands from the accounting sector that established corporations have never solved.

ContributorsKuhler, Madison Frances (Co-author) / Capuano, Bailey (Co-author) / Preston, Michael (Co-author) / Chen, Yinong (Thesis director) / Hunt, Neil (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148037-Thumbnail Image.png
Description

"Generating an astounding $110.7 billion annually in domestic revenue alone [1], the world of accounting is one deceptively lacking automation of its most business-critical processes. While accounting tools do exist for the common person, especially when it is time to pay their taxes, such innovations scarcely exist for many larger

"Generating an astounding $110.7 billion annually in domestic revenue alone [1], the world of accounting is one deceptively lacking automation of its most business-critical processes. While accounting tools do exist for the common person, especially when it is time to pay their taxes, such innovations scarcely exist for many larger industrial tasks. Exceedingly common business events, such as Business Combinations, are surprisingly manual tasks despite their $1.1 trillion valuation in 2020 [2]. This work presents the twin accounting solutions TurboGAAP and TurboIFRS: an unprecedented leap into these murky waters in an attempt to automate and streamline these gigantic accounting tasks once entrusted only to teams of experienced accountants.
A first-to-market approach to a trillion-dollar problem, TurboGAAP and TurboIFRS are the answers for years of demands from the accounting sector that established corporations have never solved."

ContributorsCapuano, Bailey Kellen (Co-author) / Preston, Michael (Co-author) / Kuhler, Madison (Co-author) / Chen, Yinong (Thesis director) / Hunt, Neil (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148043-Thumbnail Image.png
Description

Automated vehicles are becoming more prevalent in the modern world. Using platoons of automated vehicles can have numerous benefits including increasing the safety of drivers as well as streamlining roadway operations. How individual automated vehicles within a platoon react to each other is essential to creating an efficient method of

Automated vehicles are becoming more prevalent in the modern world. Using platoons of automated vehicles can have numerous benefits including increasing the safety of drivers as well as streamlining roadway operations. How individual automated vehicles within a platoon react to each other is essential to creating an efficient method of travel. This paper looks at two individual vehicles forming a platoon and tracks the time headway between the two. Several speed profiles are explored for the following vehicle including a triangular and trapezoidal speed profile. It is discovered that a safety violation occurs during platoon formation where the desired time headway between the vehicles is violated. The aim of this research is to explore if this violation can be eliminated or reduced through utilization of different speed profiles.

ContributorsLarson, Kurt Gregory (Author) / Lou, Yingyan (Thesis director) / Chen, Yan (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148001-Thumbnail Image.png
Description

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many different fields due to its ability to generalize well to different problems and produce computationally efficient, accurate predictions regarding the system of interest. In this thesis, we demonstrate the effectiveness of machine learning models applied to toy cases representative of simplified physics that are relevant to high-entropy alloy simulation. We show these models are effective at learning nonlinear dynamics for single and multi-particle cases and that more work is needed to accurately represent complex cases in which the system dynamics are chaotic. This thesis serves as a demonstration of the potential benefits of machine learning applied to high-entropy alloy simulations to generate fast, accurate predictions of nonlinear dynamics.

ContributorsDaly, John H (Author) / Ren, Yi (Thesis director) / Zhuang, Houlong (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147794-Thumbnail Image.png
Description

The nineteenth-century invention of smallpox vaccination in Great Britain has been well studied for its significance in the history of medicine as well as the ways in which it exposes Victorian anxieties regarding British nationalism, rural and urban class struggles, the behaviors of women, and animal contamination. Yet inoculation against

The nineteenth-century invention of smallpox vaccination in Great Britain has been well studied for its significance in the history of medicine as well as the ways in which it exposes Victorian anxieties regarding British nationalism, rural and urban class struggles, the behaviors of women, and animal contamination. Yet inoculation against smallpox by variolation, vaccination’s predecessor and a well-established Chinese medical technique that was spread from east to west to Great Britain, remains largely understudied in modern scholarly literature. In the early 1700s, Lady Mary Wortley Montagu, credited with bringing smallpox variolation to Great Britain, wrote first about the practice in the Turkish city of Adrianople and describes variolation as a “useful invention,” yet laments that, unlike the Turkish women who variolate only those in their “small neighborhoods,” British doctors would be able to “destroy this [disease] swiftly” worldwide should they adopt variolation. Examined through the lens of Edward Said’s Orientalism, techno-Orientalism, and medical Orientalism and contextualized by a comparison to British attitudes toward nineteenth century vaccination, eighteenth century smallpox variolation’s introduction to Britain from the non-British “Orient” represents an instance of reversed Orientalism, in which a technologically deficient British “Occident” must “Orientalize” itself to import the superior medical technology of variolation into Britain. In a scramble to retain technological superiority over the Chinese Orient, Britain manufactures a sense of total difference between an imagined British version of variolation and a real, non-British version of variolation. This imagination of total difference is maintained through characterizations of the non-British variolation as ancient, unsafe, and practiced by illegitimate practitioners, while the imagined British variolation is characterized as safe, heroic, and practiced by legitimate British medical doctors. The Occident’s instance of medical technological inferiority brought about by the importation of variolation from the Orient, which I propose represents an eighteenth-century instance of what I call medical techno-Orientalism, represents an expression of British anxiety over a medical technologically superior Orient—anxieties which express themselves as retaliatory attacks on the Orient and variolation as it is practiced in the Orient—and as an expression of British desire to maintain medical technological superiority over the Orient.

ContributorsMalotky, Braeden M (Author) / Agruss, David (Thesis director) / Soares, Rebecca (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148059-Thumbnail Image.png
Description

Generating an astounding $110.7 billion annually in domestic revenue alone [1], the world of accounting is one deceptively lacking automation of its most business-critical processes. While accounting tools do exist for the common person, especially when it is time to pay their taxes, such innovations scarcely exist for many larger

Generating an astounding $110.7 billion annually in domestic revenue alone [1], the world of accounting is one deceptively lacking automation of its most business-critical processes. While accounting tools do exist for the common person, especially when it is time to pay their taxes, such innovations scarcely exist for many larger industrial tasks. Exceedingly common business events, such as Business Combinations, are surprisingly manual tasks despite their $1.1 trillion valuation in 2020 [2]. This work presents the twin accounting solutions TurboGAAP and TurboIFRS: an unprecedented leap into these murky waters in an attempt to automate and streamline these gigantic accounting tasks once entrusted only to teams of experienced accountants.
A first-to-market approach to a trillion-dollar problem, TurboGAAP and TurboIFRS are the answers for years of demands from the accounting sector that established corporations have never solved.

ContributorsPreston, Michael Ernest (Co-author) / Capuano, Bailey (Co-author) / Kuhler, Madison (Co-author) / Chen, Yinong (Thesis director) / Hunt, Neil (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148065-Thumbnail Image.png
Description

Self-efficacy in engineering, engineering identity, and coping in engineering have been shown in previous studies to be highly important in the advancement of one’s development in the field of engineering. Through the creation and deployment of a 17 question survey, undergraduate and first year masters students were asked to provide

Self-efficacy in engineering, engineering identity, and coping in engineering have been shown in previous studies to be highly important in the advancement of one’s development in the field of engineering. Through the creation and deployment of a 17 question survey, undergraduate and first year masters students were asked to provide information on their engagement at their university, their demographic information, and to rank their level of agreement with 22 statements relating to the aforementioned ideas. Using the results from the collected data, exploratory factor analysis was completed to identify the factors that existed and any correlations. No statistically significant correlations between the identified three factors and demographic or engagement information were found. There needs to be a significant increase in the data sample size for statistically significant results to be found. Additionally, there is future work needed in the creation of an engagement measure that successfully reflects the level and impact of participation in engineering activities beyond traditional coursework.

ContributorsJones, Elizabeth Michelle (Author) / Ganesh, Tirupalavanam (Thesis director) / Graham, Kaely (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148195-Thumbnail Image.png
Description

The colossal global counterfeit market and advances in cryptography including quantum computing supremacy have led the drive for a class of anti-counterfeit tags that are physically unclonable. Dendrites, previously considered an undesirable side effect of battery operation, have promise as an extremely versatile version of such tags, with their fundamental

The colossal global counterfeit market and advances in cryptography including quantum computing supremacy have led the drive for a class of anti-counterfeit tags that are physically unclonable. Dendrites, previously considered an undesirable side effect of battery operation, have promise as an extremely versatile version of such tags, with their fundamental nature ensuring that no two dendrites are alike and that they can be read at multiple magnification scales. In this work, we first pursue a simulation for electrochemical dendrites that elucidates fundamental information about their growth mechanism. We then translate these results into physical dendrites and demonstrate methods of producing a hash from these dendrites that is damage-tolerant for real-world verification. Finally, we explore theoretical curiosities that arise from the fractal nature of dendrites. We find that uniquely ramified dendrites, which rely on lower ion mobility and conductive deposition, are particularly amenable to wavelet hashing, and demonstrate that these dendrites have strong commercial potential for securing supply chains at the highest level while maintaining a low price point.

ContributorsSneh, Tal (Author) / Kozicki, Michael (Thesis director) / Gonzalez-Velo, Yago (Committee member) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05