Matching Items (7)
Filtering by

Clear all filters

Description
The purpose of this paper is to introduce a new method of dividing wireless communication (such as the 802.11a/b/g
and cellular UMTS MAC protocols) across multiple unreliable communication links (such as Ethernet). The purpose is to introduce the appropriate hardware, software, and system architecture required to provide the basis for

The purpose of this paper is to introduce a new method of dividing wireless communication (such as the 802.11a/b/g
and cellular UMTS MAC protocols) across multiple unreliable communication links (such as Ethernet). The purpose is to introduce the appropriate hardware, software, and system architecture required to provide the basis for a wireless system (using a 802.11a/b/g
and cellular protocols as a model) that can scale to support thousands of users simultaneously (say in a large office building, super chain store, etc.) or in a small, but very dense communication RF region. Elements of communication between a base station and a Mobile Station will be analyzed statistically to demonstrate higher throughput, fewer collisions and lower bit error rates (BER) with the given bandwidth defined by the 802.11n wireless specification (use of MIMO channels will be evaluated). A new network nodal paradigm will be presented. Alternative link layer communication techniques will be recommended and analyzed for the affect on mobile devices. The analysis will describe how the algorithms used by state machines implemented on Mobile Stations and Wi-Fi client devices will be influenced by new base station transmission behavior. New hardware design techniques that can be used to optimize this architecture as well as hardware design principles in regard to the minimal hardware functional blocks required to support such a system design will be described. Hardware design and verification simulation techniques to prove the hardware design will accommodate an acceptable level of performance to meet the strict timing as it relates to this new system architecture.
ContributorsJames, Frank (Author) / Reisslein, Martin (Thesis advisor) / Ying, Lei (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2014
152383-Thumbnail Image.png
Description
Data centers connect a larger number of servers requiring IO and switches with low power and delay. Virtualization of IO and network is crucial for these servers, which run virtual processes for computing, storage, and apps. We propose using the PCI Express (PCIe) protocol and a new PCIe switch fabric

Data centers connect a larger number of servers requiring IO and switches with low power and delay. Virtualization of IO and network is crucial for these servers, which run virtual processes for computing, storage, and apps. We propose using the PCI Express (PCIe) protocol and a new PCIe switch fabric for IO and switch virtualization. The switch fabric has little data buffering, allowing up to 512 physical 10 Gb/s PCIe2.0 lanes to be connected via a switch fabric. The switch is scalable with adapters running multiple adaptation protocols, such as Ethernet over PCIe, PCIe over Internet, or FibreChannel over Ethernet. Such adaptation protocols allow integration of IO often required for disjoint datacenter applications such as storage and networking. The novel switch fabric based on space-time carrier sensing facilitates high bandwidth, low power, and low delay multi-protocol switching. To achieve Terabit switching, both time (high transmission speed) and space (multi-stage interconnection network) technologies are required. In this paper, we present the design of an up to 256 lanes Clos-network of multistage crossbar switch fabric for PCIe system. The switch core consists of 48 16x16 crossbar sub-switches. We also propose a new output contention resolution algorithm utilizing an out-of-band protocol of Request-To-Send (RTS), Clear-To-Send (CTS) before sending PCIe packets through the switch fabric. Preliminary power and delay estimates are provided.
ContributorsLuo, Haojun (Author) / Hui, Joseph (Thesis advisor) / Song, Hongjiang (Committee member) / Reisslein, Martin (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2013
152767-Thumbnail Image.png
Description
Voice and other circuit switched services in a LTE deployment can be based on a Circuit Switched Fall Back mechanism or on the upcoming Voice Over LTE option. Voice Over LTE option can be used with its SIP based signaling to route voice calls and other circuit switched services over

Voice and other circuit switched services in a LTE deployment can be based on a Circuit Switched Fall Back mechanism or on the upcoming Voice Over LTE option. Voice Over LTE option can be used with its SIP based signaling to route voice calls and other circuit switched services over the LTE's packet switched core. The main issue that is faced though is the validation of this approach before the deployment over commercial network. The test strategy devised as a result of this work will be able to visit corner scenarios and error sensitive services, so that signaling involved can be verified to ensure a robust deployment of the Voice Over LTE network. Signaling test strategy is based on the observations made during a simulated Voice Over LTE call inside the lab in a controlled environment. Emergency services offered are carefully studied to devise a robust test strategy to make sure that any service failure is avoided. Other area were the service is routed via different protocol stack layer than it normally is in a legacy circuit switched core are identified and brought into the scope of the test strategy.
ContributorsThotton Veettil, Vinayak (Author) / Reisslein, Martin (Thesis advisor) / Ying, Lei (Committee member) / McGarry, Michael (Committee member) / Arizona State University (Publisher)
Created2014
150639-Thumbnail Image.png
Description
A new type of Ethernet switch based on the PCI Express switching fabric is being presented. The switch leverages PCI Express peer-to-peer communication protocol to implement high performance Ethernet packet switching. The advantages and challenges of using the PCI Express as the switching fabric are addressed. The PCI Express is

A new type of Ethernet switch based on the PCI Express switching fabric is being presented. The switch leverages PCI Express peer-to-peer communication protocol to implement high performance Ethernet packet switching. The advantages and challenges of using the PCI Express as the switching fabric are addressed. The PCI Express is a high-speed short-distance communication protocol largely used in motherboard-level interconnects. The total bandwidth of a PCI Express 3.0 link can reach as high as 256 gigabit per second (Gb/s) per 16 lanes. Concerns for PCI Express such as buffer speed, address mapping, Quality of Service and power consumption need to be considered. An overview of the proposed Ethernet switch architecture is presented. The switch consists of a PCI Express switching fabric and multiple adaptor cards. The thesis reviews the peer-to-peer (P2P) communication protocol used in the switching fabric. The thesis also discusses the packet routing procedure in P2P protocol in detail. The Ethernet switch utilizes a portion of the Quality of Service provided with PCI Express to ensure guaranteed transmission. The thesis presents a method of adapting Ethernet packets over the PCI Express transaction layer packets. The adaptor card is divided into the following two parts: receive path and transmit path. The commercial off-the-shelf Media Access Control (MAC) core and PCI Express endpoint core are used in the adaptor. The output address lookup logic block is responsible for converting Ethernet MAC addresses to PCI Express port addresses. Different methods of providing Quality of Service in the adaptor card include classification, flow control, and error detection with the cooperation of the PCI Express switch are discussed. The adaptor logic is implemented in Verilog hardware description language. Functional simulation is conducted in ModelSim. The simulation results show that the Ethernet packets are able to be converted to the corresponding PCI Express transaction layer packets based on their destination MAC addresses. The transaction layer packets are then converted back to Ethernet packets. A functionally correct FPGA logic of the adaptor card is ready for implementation on real FPGA development board.
ContributorsChen, Caiyi (Author) / Hui, Joseph (Thesis advisor) / Reisslein, Martin (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2012
157188-Thumbnail Image.png
Description
The commercial semiconductor industry is gearing up for 5G communications in the 28GHz and higher band. In order to maintain the same relative receiver sensitivity, a larger number of antenna elements are required; the larger number of antenna elements is, in turn, driving semiconductor development. The purpose

The commercial semiconductor industry is gearing up for 5G communications in the 28GHz and higher band. In order to maintain the same relative receiver sensitivity, a larger number of antenna elements are required; the larger number of antenna elements is, in turn, driving semiconductor development. The purpose of this paper is to introduce a new method of dividing wireless communication protocols (such as the 802.11a/b/g
and cellular UMTS MAC protocols) across multiple unreliable communication links using a new link layer communication model in concert with a smart antenna aperture design referred to as Vector Antenna. A vector antenna is a ‘smart’ antenna system and as any smart antenna aperture, the design inherently requires unique microwave component performance as well as Digital Signal Processing (DSP) capabilities. This performance and these capabilities are further enhanced with a patented wireless protocol stack capability.
ContributorsJames, Frank Lee (Author) / Reisslein, Martin (Thesis advisor) / Seeling, Patrick (Thesis advisor) / McGarry, Michael (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2019
149439-Thumbnail Image.png
Description
Ethernet switching is provided to interconnect multiple Ethernets for the exchange of Ethernet data frames. Most Ethernet switches require data buffering and Ethernet signal regeneration at the switch which incur the problems of substantial signal processing, power consumption, and transmission delay. To solve these problems, a cross bar architecture switching

Ethernet switching is provided to interconnect multiple Ethernets for the exchange of Ethernet data frames. Most Ethernet switches require data buffering and Ethernet signal regeneration at the switch which incur the problems of substantial signal processing, power consumption, and transmission delay. To solve these problems, a cross bar architecture switching system for 10GBASE-T Ethernet is proposed in this thesis. The switching system is considered as the first step of implementing a multi-stage interconnection network to achieve Terabit or Petabit switching. By routing customized headers in capsulated Ethernet frames in an out-of-band control method, the proposed switching system would transmit the original Ethernet frames with little processing, thereby makes the system appear as a simple physical medium for different hosts. The switching system is designed and performed by using CMOS technology.
ContributorsLuo, Haojun (Author) / Hui, Joseph (Thesis advisor) / Zhang, Junshan (Committee member) / Reisslein, Martin (Committee member) / Arizona State University (Publisher)
Created2010
168845-Thumbnail Image.png
Description
Ethernet based technologies are emerging as the ubiquitous de facto form of communication due to their interoperability, capacity, cost, and reliability. Traditional Ethernet is designed with the goal of delivering best effort services. However, several real time and control applications require more precise deterministic requirements and Ultra Low Latency (ULL),

Ethernet based technologies are emerging as the ubiquitous de facto form of communication due to their interoperability, capacity, cost, and reliability. Traditional Ethernet is designed with the goal of delivering best effort services. However, several real time and control applications require more precise deterministic requirements and Ultra Low Latency (ULL), that Ethernet cannot be used for. Current Industrial Automation and Control Systems (IACS) applications use semi-proprietary technologies that provide deterministic communication behavior for sporadic and periodic traffic, but can lead to closed systems that do not interoperate effectively. The convergence between the informational and operational technologies in modern industrial control networks cannot be achieved using traditional Ethernet. Time Sensitive Networking (TSN) is a suite of IEEE standards designed by augmenting traditional Ethernet with real time deterministic properties ideal for Digital Signal Processing (DSP) applications. Similarly, Deterministic Networking (DetNet) is a Internet Engineering Task Force (IETF) standardization that enhances the network layer with the required deterministic properties needed for IACS applications. This dissertation provides an in-depth survey and literature review on both standards/research and 5G related material on ULL. Recognizing the limitations of several features of the standards, this dissertation provides an empirical evaluation of these approaches and presents novel enhancements to the shapers and schedulers involved in TSN. More specifically, this dissertation investigates Time Aware Shaper (TAS), Asynchronous Traffic Shaper (ATS), and Cyclic Queuing and Forwarding (CQF) schedulers. Moreover, the IEEE 802.1Qcc, centralized management and control, and the IEEE 802.1Qbv can be used to manage and control scheduled traffic streams with periodic properties along with best-effort traffic on the same network infrastructure. Both the centralized network/distributed user model (hybrid model) and the fully-distributed (decentralized) IEEE 802.1Qcc model are examined on a typical industrial control network with the goal of maximizing scheduled traffic streams. Finally, since industrial applications and cyber-physical systems require timely delivery, any channel or node faults can cause severe disruption to the operational continuity of the application. Therefore, the IEEE 802.1CB, Frame Replication and Elimination for Reliability (FRER), is examined and tested using machine learning models to predict faulty scenarios and issue remedies seamlessly.
ContributorsNasrallah, Ahmed (Author) / Reisslein, Martin (Thesis advisor) / Syrotiuk, Violet R. (Committee member) / LiKamWa, Robert (Committee member) / Thyagaturu, Akhilesh (Committee member) / Arizona State University (Publisher)
Created2022