Matching Items (569)
Filtering by

Clear all filters

150160-Thumbnail Image.png
Description
The importance of unsaturated soil behavior stems from the fact that a vast majority of infrastructures are founded on unsaturated soils. Research has recently been concentrated on unsaturated soil properties. In the evaluation of unsaturated soils, researchers agree that soil water retention characterized by the soil water characteristic curve (SWCC)

The importance of unsaturated soil behavior stems from the fact that a vast majority of infrastructures are founded on unsaturated soils. Research has recently been concentrated on unsaturated soil properties. In the evaluation of unsaturated soils, researchers agree that soil water retention characterized by the soil water characteristic curve (SWCC) is among the most important factors when assessing fluid flow, volume change and shear strength for these soils. The temperature influence on soil moisture flow is a major concern in the design of important engineering systems such as barriers in underground repositories for radioactive waste disposal, ground-source heat pump (GSHP) systems, evapotranspirative (ET) covers and pavement systems.. Accurate modeling of the temperature effect on the SWCC may lead to reduction in design costs, simpler constructability, and hence, more sustainable structures. . The study made use of two possible approaches to assess the temperature effect on the SWCC. In the first approach, soils were sorted from a large soil database into families of similar properties but located on sites with different MAAT. The SWCCs were plotted for each family of soils. Most families of soils showed a clear trend indicating the influence of temperature on the soil water retention curve at low degrees of saturation.. The second approach made use of statistical analysis. It was demonstrated that the suction increases as the MAAT decreases. The statistical analysis showed that even though the plasticity index proved to have the greatest influence on suction, the mean annual air temperature effect proved not to be negligible. In both approaches, a strong relationship between temperature, suction and soil properties was observed. Finally, a comparison of the model based on the mean annual air temperature environmental factor was compared to another model that makes use of the Thornthwaite Moisture Index (TMI) to estimate the environmental effects on the suction of unsaturated soils. Results showed that the MAAT can be a better indicator when compared to the TMI found but the results were inconclusive due to the lack of TMI data available.
ContributorsElkeshky, Maie Mohamed (Author) / Zapata, Claudia E (Thesis advisor) / Houston, Sandra (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2011
150184-Thumbnail Image.png
Description
This study explores how newspapers framed the weight-loss drugs Xenical®(orlistat) and Alli® (over-the-counter orlistat) during the time period of three months prior to their approvals by the U.S. Food and Drug Administration until one year after each became available on the market. As of June 2011, orlistat is the

This study explores how newspapers framed the weight-loss drugs Xenical®(orlistat) and Alli® (over-the-counter orlistat) during the time period of three months prior to their approvals by the U.S. Food and Drug Administration until one year after each became available on the market. As of June 2011, orlistat is the only weight-loss drug available for long-term use in the U.S. Newspapers are influential sources of information about health issues. Agenda-setting, framing, and priming in news articles can have a powerful effect on public perceptions and behaviors. To conduct the content analysis, researchers first developed a codebook containing variables that described the sources of attribution and the features of each drug. They tested the codebook in a series of pilot tests to ensure inter-rater reliability. The sample of texts for the content analysis, drawn from LexisNexis Academic, contained 183 newspaper articles composed of 85 Xenical articles and 98 Alli articles. The overlap was 25% for inter-rater reliability as well as intra-rater reliability. Frequencies were tabulated using Predictive Analytics SoftWare, version 18.0.3. Results demonstrated that Xenical and Alli were framed differently in some critical ways. For example, there were twice as many quotes from the manufacturer for Alli than for Xenical. Researchers concluded that the reporting on Alli was heavily influenced by the manufacturer's multi-media public relations campaign in the months prior to the market-release date.
ContributorsLehmann, Jessica (Author) / Hampl, Jeffrey S. (Thesis advisor) / Bramlett-Solomon, Sharon (Committee member) / Hall, Richard (Committee member) / Arizona State University (Publisher)
Created2011
150282-Thumbnail Image.png
Description
The structural design of pavements in both highways and airfields becomes complex when one considers environmental effects and ground water table variation. Environmental effects have been incorporated on the new Mechanistic-Empirical Pavement Design Guide (MEPDG) but little has been done to incorporate environmental effects on airfield design. This work presents

The structural design of pavements in both highways and airfields becomes complex when one considers environmental effects and ground water table variation. Environmental effects have been incorporated on the new Mechanistic-Empirical Pavement Design Guide (MEPDG) but little has been done to incorporate environmental effects on airfield design. This work presents a developed code produced from this research study called ZAPRAM, which is a mechanistically based pavement model based upon Limiting Strain Criteria in airfield HMA pavement design procedures. ZAPRAM is capable of pavement and airfield design analyses considering environmental effects. The program has been coded in Visual Basic and implemented in an event-driven, user-friendly educational computer program, which runs in Excel environment. Several studies were conducted in order to insure the validity of the analysis as well as the efficiency of the software. The first study yielded the minimum threshold number of computational points the user should use at a specific depth within the pavement system. The second study was completed to verify the correction factor for the Odemark's transformed thickness equation. Default correction factors were included in the code base on a large comparative study between Odemark's and MLET. A third study was conducted to provide a comparison of flexible airfield pavement design thicknesses derived from three widely accepted design procedures used in practice today: the Asphalt Institute, Shell Oil, and the revised Corps of Engineering rutting failure criteria to calculate the thickness requirements necessary for a range of design input variables. The results of the comparative study showed that there is a significant difference between the pavement thicknesses obtained from the three design procedures, with the greatest deviation found between the Shell Oil approach and the other two criteria. Finally, a comprehensive sensitivity study of environmental site factors and the groundwater table depth upon flexible airfield pavement design and performance was completed. The study used the newly revised USACE failure criteria for subgrade shear deformation. The methodology utilized the same analytical methodology to achieve real time environmental effects upon unbound layer modulus, as that used in the new AASHTO MEPDG. The results of this effort showed, for the first time, the quantitative impact of the significant effects of the climatic conditions at the design site, coupled with the importance of the depth of the groundwater table, on the predicted design thicknesses. Significant cost savings appear to be quite reasonable by utilizing principles of unsaturated soil mechanics into the new airfield pavement design procedure found in program ZAPRAM.
ContributorsSalim, Ramadan A (Author) / Zapata, Claudia (Thesis advisor) / Witczak, Matthew (Thesis advisor) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2011
150293-Thumbnail Image.png
Description
Strong communities are important for society. One of the most important community builders, making friends, is poorly supported online. Dating sites support it but in romantic contexts. Other major social networks seem not to encourage it because either their purpose isn't compatible with introducing strangers or the prevalent methods of

Strong communities are important for society. One of the most important community builders, making friends, is poorly supported online. Dating sites support it but in romantic contexts. Other major social networks seem not to encourage it because either their purpose isn't compatible with introducing strangers or the prevalent methods of introduction aren't effective enough to merit use over real word alternatives. This paper presents a novel digital social network emphasizing creating friendships. Research has shown video chat communication can reach in-person levels of trust; coupled with a game environment to ease the discomfort people often have interacting with strangers and a recommendation engine, Zazzer, the presented system, allows people to meet and get to know each other in a manner much more true to real life than traditional methods. Its network also allows players to continue to communicate afterwards. The evaluation looks at real world use, measuring the frequency with which players choose the video chat game versus alternative, more traditional methods of online introduction. It also looks at interactions after the initial meeting to discover how effective video chat games are in creating sticky social connections. After initial use it became apparent a critical mass of users would be necessary to draw strong conclusions, however the collected data seemed to give preliminary support to the idea that video chat games are more effective than traditional ways of meeting online in creating new relationships.
ContributorsSorensen, Asael (Author) / VanLehn, Kurt (Thesis advisor) / Liu, Huan (Committee member) / Burleson, Winslow (Committee member) / Arizona State University (Publisher)
Created2011
150309-Thumbnail Image.png
Description
Same-sex couples establish and maintain relationships for many of the reasons heterosexuals do, even without widespread acceptance. The manner in which couples maintain their relationships constitutes a subject of considerable research, though such research has primarily examined heterosexuals. Yet, two studies have evaluated relational maintenance behaviors for same-sex couples and

Same-sex couples establish and maintain relationships for many of the reasons heterosexuals do, even without widespread acceptance. The manner in which couples maintain their relationships constitutes a subject of considerable research, though such research has primarily examined heterosexuals. Yet, two studies have evaluated relational maintenance behaviors for same-sex couples and heterosexuals: Haas and Stafford (1998, 2005). Although these studies found similarities between heterosexual and homosexual relationships, significant differences emerged involving social networks and meta-relational talk. Haas and Stafford attributed these differences to the lack of societal and legal support. The present thesis examined empirically the link between perceived social approval, and relational maintenance behaviors, focusing on differences between cross-sex and same-sex involvements. Dainton and Stafford's (1993) typology of social network compositions, measures of social approval and encouragement based on Felmlee (2001), and Canary and Stafford's (1992) five behavior relational maintenance typology tool with Haas and Stafford's (2005) measures of meta-relational talk were utilized for an online survey. A total of 157 online, geographically diverse surveys were collected from heterosexual and homosexual individuals involved stable, intimate relationships. Unique to this study, results demonstrate significant correlations between overall social approval and the use of relational maintenance behaviors for both heterosexual and same-sex couples. Previous literature has linked lack of social approval with the use of unique maintenance strategies employed by same-sex couples; however, findings from the present study do not support this. Interestingly, increases in overall social approval, not decreases, are positively correlated with the use of meta-relational talk for same-sex couples.
ContributorsMcDonald, Patrick (Author) / Alberts, Jess K. (Thesis advisor) / Canary, Daniel J. (Thesis advisor) / Guerrero, Laura (Committee member) / Trethewey, Angela (Committee member) / Arizona State University (Publisher)
Created2011
150127-Thumbnail Image.png
Description
This dissertation describes development of a procedure for obtaining high quality, optical grade sand coupons from frozen sand specimens of Ottawa 20/30 sand for image processing and analysis to quantify soil structure along with a methodology for quantifying the microstructure from the images. A technique for thawing and stabilizing

This dissertation describes development of a procedure for obtaining high quality, optical grade sand coupons from frozen sand specimens of Ottawa 20/30 sand for image processing and analysis to quantify soil structure along with a methodology for quantifying the microstructure from the images. A technique for thawing and stabilizing frozen core samples was developed using optical grade Buehler® Epo-Tek® epoxy resin, a modified triaxial cell, a vacuum/reservoir chamber, a desiccator, and a moisture gauge. The uniform epoxy resin impregnation required proper drying of the soil specimen, application of appropriate confining pressure and vacuum levels, and epoxy mixing, de-airing and curing. The resulting stabilized sand specimen was sectioned into 10 mm thick coupons that were planed, ground, and polished with progressively finer diamond abrasive grit levels using the modified Allied HTP Inc. polishing method so that the soil structure could be accurately quantified using images obtained with the use of an optical microscopy technique. Illumination via Bright Field Microscopy was used to capture the images for subsequent image processing and sand microstructure analysis. The quality of resulting images and the validity of the subsequent image morphology analysis hinged largely on employment of a polishing and grinding technique that resulted in a flat, scratch free, reflective coupon surface characterized by minimal microstructure relief and good contrast between the sand particles and the surrounding epoxy resin. Subsequent image processing involved conversion of the color images first to gray scale images and then to binary images with the use of contrast and image adjustments, removal of noise and image artifacts, image filtering, and image segmentation. Mathematical morphology algorithms were used on the resulting binary images to further enhance image quality. The binary images were then used to calculate soil structure parameters that included particle roundness and sphericity, particle orientation variability represented by rose diagrams, statistics on the local void ratio variability as a function of the sample size, and the local void ratio distribution histograms using Oda's method and Voronoi tessellation method, including the skewness, kurtosis, and entropy of a gamma cumulative probability distribution fit to the local void ratio distribution.
ContributorsCzupak, Zbigniew David (Author) / Kavazanjian, Edward (Thesis advisor) / Zapata, Claudia (Committee member) / Houston, Sandra (Committee member) / Arizona State University (Publisher)
Created2011
150085-Thumbnail Image.png
Description
The wood-framing trade has not sufficiently been investigated to understand the work task sequencing and coordination among crew members. A new mental framework for a performing crew was developed and tested through four case studies. This framework ensured similar team performance as the one provided by task micro-scheduling in planning

The wood-framing trade has not sufficiently been investigated to understand the work task sequencing and coordination among crew members. A new mental framework for a performing crew was developed and tested through four case studies. This framework ensured similar team performance as the one provided by task micro-scheduling in planning software. It also allowed evaluation of the effect of individual coordination within the crew on the crew's productivity. Using design information, a list of micro-activities/tasks and their predecessors was automatically generated for each piece of lumber in the four wood frames. The task precedence was generated by applying elementary geometrical and technological reasoning to each frame. Then, the duration of each task was determined based on observations from videotaped activities. Primavera's (P6) resource leveling rules were used to calculate the sequencing of tasks and the minimum duration of the whole activity for various crew sizes. The results showed quick convergence towards the minimum production time and allowed to use information from Building Information Models (BIM) to automatically establish the optimal crew sizes for frames. Late Start (LS) leveling priority rule gave the shortest duration in every case. However, the logic of LS tasks rule is too complex to be conveyed to the framing crew. Therefore, the new mental framework of a well performing framer was developed and tested to ensure high coordination. This mental framework, based on five simple rules, can be easily taught to the crew and ensures a crew productivity congruent with the one provided by the LS logic. The case studies indicate that once the worst framer in the crew surpasses the limit of 11% deviation from applying the said five rules, every additional percent of deviation reduces the productivity of the whole crew by about 4%.
ContributorsMaghiar, Marcel M (Author) / Wiezel, Avi (Thesis advisor) / Mitropoulos, Panagiotis (Committee member) / Cooke, Nancy J. (Committee member) / Arizona State University (Publisher)
Created2011
150101-Thumbnail Image.png
Description
As a prelude to a study on the post-liquefaction properties and structure of soil, an investigation of ground freezing as an undisturbed sampling technique was conducted to investigate the ability of this sampling technique to preserve soil structure and properties. Freezing the ground is widely regarded as an appropriate technique

As a prelude to a study on the post-liquefaction properties and structure of soil, an investigation of ground freezing as an undisturbed sampling technique was conducted to investigate the ability of this sampling technique to preserve soil structure and properties. Freezing the ground is widely regarded as an appropriate technique to recover undisturbed samples of saturated cohesionless soil for laboratory testing, despite the fact that water increases in volume when frozen. The explanation generally given for the preservation of soil structure using the freezing technique was that, as long as the freezing front advanced uni-directionally, the expanding pore water is expelled ahead of the freezing front as the front advances. However, a literature review on the transition of water to ice shows that the volume of ice expands approximately nine percent after freezing, bringing into question the hypothesized mechanism and the ability of a frozen and then thawed specimen to retain the properties and structure of the soil in situ. Bench-top models were created by pluviation of sand. The soil in the model was then saturated and subsequently frozen. Freezing was accomplished using a pan filled with alcohol and dry ice placed on the surface of the sand layer to induce a unidirectional freezing front in the sample container. Coring was used to recover frozen samples from model containers. Recovered cores were then placed in a triaxial cell, thawed, and subjected to consolidated undrained loading. The stress-strain-strength behavior of the thawed cores was compared to the behavior of specimens created in a split mold by pluviation and then saturated and sheared without freezing and thawing. The laboratory testing provide insight to the impact of freezing and thawing on the properties of cohesionless soil.
ContributorsKatapa, Kanyembo (Author) / Kavazanjian, Edward (Thesis advisor) / Houston, Sandra (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2011
152283-Thumbnail Image.png
Description
The &ldquoMormon; Colonies” in Chihuahua, northern Mexico, boast a sizable population of women originally from the United States who have immigrated to these small Mexican towns. This ethnographic study of the immigrant women in the area focuses on questions of citizenship and belonging, and bolsters the scholarship on U.S. American

The &ldquoMormon; Colonies” in Chihuahua, northern Mexico, boast a sizable population of women originally from the United States who have immigrated to these small Mexican towns. This ethnographic study of the immigrant women in the area focuses on questions of citizenship and belonging, and bolsters the scholarship on U.S. American immigrants in Mexico. Using data from 15 unstructured interviews, the women&rsquos; experiences of migration provide a portrait of U.S. American immigrants in a Mexican religious community. Analysis of this data using grounded theory has revealed that these U.S. American women have created a third social space for themselves, to a large degree retaining their original culture, language, and political loyalty. Their stories contribute to the literature on transnational migration, providing an account of the way migrants of privilege interact with their society of settlement.
ContributorsNielsen, Vanessa (Author) / Mean, Lindsey (Thesis advisor) / Téllez, Michelle (Committee member) / Gruber, Diane (Committee member) / Arizona State University (Publisher)
Created2013
152364-Thumbnail Image.png
Description
Civil infrastructures are susceptible to damage under the events of natural or manmade disasters. Over the last two decades, the use of emerging engineering materials, such as the fiber-reinforced plastics (FRPs), in structural retrofitting have gained significant popularity. However, due to their inherent brittleness and lack of energy dissipation, undesirable

Civil infrastructures are susceptible to damage under the events of natural or manmade disasters. Over the last two decades, the use of emerging engineering materials, such as the fiber-reinforced plastics (FRPs), in structural retrofitting have gained significant popularity. However, due to their inherent brittleness and lack of energy dissipation, undesirable failure modes of the FRP-retrofitted systems, such as sudden laminate fracture and debonding, have been frequently observed. In this light, a Carbon-fiber reinforced Hybrid-polymeric Matrix Composite (or CHMC) was developed to provide a superior, yet affordable, solution for infrastructure damage mitigation and protection. The microstructural and micromechanical characteristics of the CHMC was investigated using scanning electron microscopy (SEM) and nanoindentation technique. The mechanical performance, such as damping, was identified using free and forced vibration tests. A simplified analytical model based on micromechanics was developed to predict the laminate stiffness using the modulus profile tested by the nanoindentation. The prediction results were verified by the flexural modulus calculated from the vibration tests. The feasibility of using CHMC to retrofit damaged structural systems was investigated via a series of structural component level tests. The effectiveness of using CHMC versus conventional carbon-fiber reinforced epoxy (CF/ epoxy) to retrofit notch damaged steel beams were tested. The comparison of the test results indicated the superior deformation capacity of the CHMC retrofitted beams. The full field strain distributions near the critical notch tip region were experimentally determined by the digital imaging correlation (DIC), and the results matched well with the finite element analysis (FEA) results. In the second series of tests, the application of CHMC was expanded to retrofit the full-scale fatigue-damaged concrete-encased steel (or SRC) girders. Similar to the notched steel beam tests, the CHMC retrofitted SRC girders exhibited substantially better post-peak load ductility than that of CF/ epoxy retrofitted girder. Lastly, a quasi-static push over test on the CHMC retrofitted reinforced concrete shear wall further highlighted the CHMC's capability of enhancing the deformation and energy dissipating potential of the damaged civil infrastructure systems. Analytical and numerical models were developed to assist the retrofitting design using the newly developed CHMC material.
ContributorsZhou, Hongyu (Author) / Attard, Thomas L (Thesis advisor) / Fafitis, Apostolos (Thesis advisor) / Mignolet, Marc P (Committee member) / Ariaratnam, Samuel (Committee member) / Thomas, Benjamin (Committee member) / Blumsom, Jim (Committee member) / Arizona State University (Publisher)
Created2013