Matching Items (13)
Filtering by

Clear all filters

149679-Thumbnail Image.png
Description
Though it is a widespread adaptation in humans and many other animals, parental care comes in a variety of forms and its subtle physiological costs, benefits, and tradeoffs related to offspring are often unknown. Thus, I studied the hydric, respiratory, thermal, and fitness dynamics of maternal egg-brooding behavior in Children's

Though it is a widespread adaptation in humans and many other animals, parental care comes in a variety of forms and its subtle physiological costs, benefits, and tradeoffs related to offspring are often unknown. Thus, I studied the hydric, respiratory, thermal, and fitness dynamics of maternal egg-brooding behavior in Children's pythons (Antaresia childreni). I demonstrated that tight coiling detrimentally creates a hypoxic developmental environment that is alleviated by periodic postural adjustments. Alternatively, maternal postural adjustments detrimentally elevate rates of egg water loss relative to tight coiling. Despite ventilating postural adjustments, the developmental environment becomes increasingly hypoxic near the end of incubation, which reduces embryonic metabolism. I further demonstrated that brooding-induced hypoxia detrimentally affects offspring size, performance, locomotion, and behavior. Thus, parental care in A. childreni comes at a cost to offspring due to intra-offspring tradeoffs (i.e., those that reflect competing offspring needs, such as water balance and respiration). Next, I showed that, despite being unable to intrinsically produce body heat, A. childreni adjust egg-brooding behavior in response to shifts in nest temperature, which enhances egg temperature (e.g., reduced tight coiling during nest warming facilitated beneficial heat transfer to eggs). Last, I demonstrated that A. childreni adaptively adjust their egg-brooding behaviors due to an interaction between nest temperature and humidity. Specifically, females' behavioral response to nest warming was eliminated during low nest humidity. In combination with other studies, these results show that female pythons sense environmental temperature and humidity and utilize this information at multiple time points (i.e., during gravidity [egg bearing], at oviposition [egg laying], and during egg brooding) to enhance the developmental environment of their offspring. This research demonstrates that maternal behaviors that are simple and subtle, yet easily quantifiable, can balance several critical developmental variables (i.e., thermoregulation, water balance, and respiration).
ContributorsStahlschmidt, Zachary R (Author) / DeNardo, Dale F (Thesis advisor) / Harrison, Jon (Committee member) / McGraw, Kevin (Committee member) / Rutowski, Ronald (Committee member) / Walsberg, Glenn (Committee member) / Arizona State University (Publisher)
Created2011
Description
Speciation is the fundamental process that has generated the vast diversity of life on earth. The hallmark of speciation is the evolution of barriers to gene flow. These barriers may reduce gene flow either by keeping incipient species from hybridizing at all (pre-zygotic), or by reducing the fitness of hybrids

Speciation is the fundamental process that has generated the vast diversity of life on earth. The hallmark of speciation is the evolution of barriers to gene flow. These barriers may reduce gene flow either by keeping incipient species from hybridizing at all (pre-zygotic), or by reducing the fitness of hybrids (post-zygotic). To understand the genetic architecture of these barriers and how they evolve, I studied a genus of wasps that exhibits barriers to gene flow that act both pre- and post-zygotically. Nasonia is a genus of four species of parasitoid wasps that can be hybridized in the laboratory. When two of these species, N. vitripennis and N. giraulti are mated, their offspring suffer, depending on the generation and cross examined, up to 80% mortality during larval development due to incompatible genic interactions between their nuclear and mitochondrial genomes. These species also exhibit pre-zygotic isolation, meaning they are more likely to mate with their own species when given the choice. I examined these two species and their hybrids to determine the genetic and physiological bases of both speciation mechanisms and to understand the evolutionary forces leading to them. I present results that indicate that the oxidative phosphorylation (OXPHOS) pathway, an essential pathway that is responsible for mitochondrial energy generation, is impaired in hybrids of these two species. These results indicate that this impairment is due to the unique evolutionary dynamics of the combined nuclear and mitochondrial origin of this pathway. I also present results showing that, as larvae, these hybrids experience retarded growth linked to the previously observed mortality and I explore possible physiological mechanisms for this. Finally, I show that the pre-mating isolation is due to a change in a single pheromone component in N. vitripennis males, that this change is under simple genetic control, and that it evolved neutrally before being co-opted as a species recognition signal. These results are an important addition to our overall understanding of the mechanisms of speciation and showcase Nasonia as an emerging model for the study of the genetics of speciation.
ContributorsGibson, Joshua D (Author) / Gadau, Jürgen (Thesis advisor) / Harrison, Jon (Committee member) / Pratt, Stephen (Committee member) / Verrelli, Brian (Committee member) / Willis, Wayne (Committee member) / Arizona State University (Publisher)
Created2013
150816-Thumbnail Image.png
Description
Land management practices such as domestic animal grazing can alter plant communities via changes in soil structure and chemistry, species composition, and plant nutrient content. These changes can affect the abundance and quality of plants consumed by insect herbivores with consequent changes in population dynamics. These population changes can translate

Land management practices such as domestic animal grazing can alter plant communities via changes in soil structure and chemistry, species composition, and plant nutrient content. These changes can affect the abundance and quality of plants consumed by insect herbivores with consequent changes in population dynamics. These population changes can translate to massive crop damage and pest control costs. My dissertation focused on Oedaleus asiaticus, a dominant Asian locust, and had three main objectives. First, I identified morphological, physiological, and behavioral characteristics of the migratory ("brown") and non-migratory ("green") phenotypes. I found that brown morphs had longer wings, larger thoraxes and higher metabolic rates compared to green morphs, suggesting that developmental plasticity allows greater migratory capacity in the brown morph of this locust. Second, I tested the hypothesis of a causal link between livestock overgrazing and an increase in migratory swarms of O. asiaticus. Current paradigms generally assume that increased plant nitrogen (N) should enhance herbivore performance by relieving protein-limitation, increasing herbivorous insect populations. I showed, in contrast to this scenario, that host plant N-enrichment and high protein artificial diets decreased the size and viability of O. asiaticus. Plant N content was lowest and locust abundance highest in heavily livestock-grazed fields where soils were N-depleted, likely due to enhanced erosion and leaching. These results suggest that heavy livestock grazing promotes outbreaks of this locust by reducing plant protein content. Third, I tested for the influence of dietary imbalance, in conjunction with high population density, on migratory plasticity. While high population density has clearly been shown to induce the migratory morph in several locusts, the effect of diet has been unclear. I found that locusts reared at high population density and fed unfertilized plants (i.e. high quality plants for O. asiaticus) had the greatest migratory capacity, and maintained a high percent of brown locusts. These results did not support the hypothesis that poor-quality resources increased expression of migratory phenotypes. This highlights a need to develop new theoretical frameworks for predicting how environmental factors will regulate migratory plasticity in locusts and perhaps other insects.
ContributorsCease, Arianne (Author) / Harrison, Jon (Thesis advisor) / Elser, James (Thesis advisor) / DeNardo, Dale (Committee member) / Quinlan, Michael (Committee member) / Sabo, John (Committee member) / Arizona State University (Publisher)
Created2012
150818-Thumbnail Image.png
Description
While exercising mammalian muscle increasingly relies on carbohydrates for fuel as aerobic exercise intensity rises above the moderate range, flying birds are extraordinary endurance athletes and fuel flight, a moderate-high intensity exercise, almost exclusively with lipid. In addition, Aves have long lifespans compared to weight-matched mammals. As skeletal muscle mitochondria

While exercising mammalian muscle increasingly relies on carbohydrates for fuel as aerobic exercise intensity rises above the moderate range, flying birds are extraordinary endurance athletes and fuel flight, a moderate-high intensity exercise, almost exclusively with lipid. In addition, Aves have long lifespans compared to weight-matched mammals. As skeletal muscle mitochondria account for the majority of oxygen consumption during aerobic exercise, the primary goal was to investigate differences in isolated muscle mitochondria between these species and to examine to what extent factors intrinsic to mitochondria may account for the behavior observed in the intact tissue and whole organism. First, maximal enzyme activities were assessed in sparrow and rat mitochondria. Citrate synthase and aspartate aminotransferase activity were higher in sparrow compared to rat mitochondria, while glutamate dehydrogenase activity was lower. Sparrow mitochondrial NAD-linked isocitrate dehydrogenase activity was dependent on phosphate, unlike the mammalian enzyme. Next, the rate of oxygen consumption (JO), electron transport chain (ETC) activity, and reactive oxygen species (ROS) production were assessed in intact mitochondria. Maximal rates of fat oxidation were lower than for carbohydrate in rat but not sparrow mitochondria. ETC activity was higher in sparrows, but no differences were found in ROS production between species. Finally, fuel selection and control of respiration at three rates between rest and maximum were assessed. Mitochondrial fuel oxidation and selection mirrored that of the whole body; in rat mitochondria the reliance on carbohydrate increased as the rate of oxygen consumption increased, whereas fat dominated under all conditions in the sparrow. These data indicate fuel selection, at least in part, can be modulated at the level of the mitochondrial matrix when multiple substrates are present at saturating levels. As an increase in matrix oxidation-reduction potential has been linked to a suppression of fat oxidation and high ROS production, the high ETC activity relative to dehydrogenase activity in avian compared to mammalian mitochondria may result in lower matrix oxidation-reduction potential, allowing fatty acid oxidation to proceed while also resulting in low ROS production in vivo.
ContributorsKuzmiak, Sarah (Author) / Willis, Wayne T (Thesis advisor) / Mandarino, Lawrence (Committee member) / Sweazea, Karen (Committee member) / Harrison, Jon (Committee member) / Gadau, Juergen (Committee member) / Arizona State University (Publisher)
Created2012
151260-Thumbnail Image.png
Description
Social structure affects many aspects of ecology including mating systems, dispersal, and movements. The quality and pattern of associations among individuals can define social structure, thus detailed behavioral observations are vital to understanding species social structure and many other aspects of their ecology. In squamate reptiles (lizards and snakes), detailed

Social structure affects many aspects of ecology including mating systems, dispersal, and movements. The quality and pattern of associations among individuals can define social structure, thus detailed behavioral observations are vital to understanding species social structure and many other aspects of their ecology. In squamate reptiles (lizards and snakes), detailed observations of associations among individuals have been primarily limited to several lineages of lizards and have revealed a variety of social structures, including polygynous family group-living and monogamous pair-living. Here I describe the social structure of two communities within a population of Arizona black rattlesnakes (Crotalus cerberus) using association indices and social network analysis. I used remote timelapse cameras to semi-continuously sample rattlesnake behavior at communal basking sites during early April through mid-May in 2011 and 2012. I calculated an association index for each dyad (proportion of time they spent together) and used these indices to construct a weighted, undirected social network for each community. I found that individual C. cerberus vary in their tendency to form associations and are selective about with whom they associate. Some individuals preferred to be alone or in small groups while others preferred to be in large groups. Overall, rattlesnakes exhibited non-random association patterns, and this result was mainly driven by association selection of adults. Adults had greater association strengths and were more likely to have limited and selected associates. I identified eight subgroups within the two communities (five in one, three in the other), all of which contained adults and juveniles. My study is the first to show selected associations among individual snakes, but to my knowledge it is also the first to use association indices and social network analysis to examine association patterns among snakes. When these methods are applied to other snake species that aggregate, I anticipate the `discovery' of similar social structures.
ContributorsAmarello, Melissa (Author) / DeNardo, Dale F (Thesis advisor) / Sullivan, Brian K. (Committee member) / Schuett, Gordon W. (Committee member) / Arizona State University (Publisher)
Created2012
168531-Thumbnail Image.png
Description
Understanding why animals form social groups is a fundamental aim of sociobiology. To date, the field has been dominated by studies of kin groups, which have emphasized indirect fitness benefits as key drivers of grouping among relatives. Nevertheless, many animal groups are comprised of unrelated individuals. These cases provide unique

Understanding why animals form social groups is a fundamental aim of sociobiology. To date, the field has been dominated by studies of kin groups, which have emphasized indirect fitness benefits as key drivers of grouping among relatives. Nevertheless, many animal groups are comprised of unrelated individuals. These cases provide unique opportunities to illuminate drivers of social evolution beyond indirect fitness, especially ecological factors. This dissertation combines behavioral, physiological, and ecological approaches to explore the conditions that favor group formation among non-kin, using as a model the facultatively social carpenter bee, Xylocopa sonorina. Using behavioral and genetic techniques, I found that nestmates in this species are often unrelated, and that non-kin groups form following extensive inter-nest migration.Group living may arise as a strategy to mitigate constraints on available breeding space. To test the hypothesis that nest construction is prohibitively costly for carpenter bees, I measured metabolic rates of excavating bees and used imaging techniques to quantify nest volumes. From these measurements, I found that nest construction is highly energetically costly, and that bees who inherit nests through social queuing experience substantial energetic savings. These costs are exacerbated by limitations on the reuse of existing nests. Using repeated CT scans of nesting logs, I examined changes in nest architecture over time and found that repeatedly inherited tunnels become indefensible to intruders, and are subsequently abandoned. Together, these factors underlie intense competition over available breeding space. The imaging analysis of nesting logs additionally revealed strong seasonal effects on social strategy, with social nesting dominating during winter. To test the hypothesis that winter social nesting arises from intrinsic physiological advantages of grouping, I experimentally manipulated social strategy in overwintering bees. I found that social bees conserve heat and body mass better than solitary bees, suggesting fitness benefits to grouping in cold, resource-scarce conditions. Together, these results suggest that grouping in X. sonorina arises from dynamic strategies to maximize direct fitness in response to harsh and/or competitive conditions. These studies provide empirical insights into the ecological conditions that favor non-kin grouping, and emphasize the importance of ecology in shaping sociality at its evolutionary origins.
ContributorsOstwald, Madeleine (Author) / Fewell, Jennifer H (Thesis advisor) / Amdam, Gro (Committee member) / Harrison, Jon (Committee member) / Pratt, Stephen (Committee member) / Kapheim, Karen (Committee member) / Arizona State University (Publisher)
Created2022
193653-Thumbnail Image.png
Description
As water is essential for survival, seasonal scarcity of freshwater resources can pose a challenge for many species. In xeric environments, efficient location of ephemeral water is crucial to capitalize on this rare, critical resource. Yet little is known about how organisms locate water, though it has been acknowledged that

As water is essential for survival, seasonal scarcity of freshwater resources can pose a challenge for many species. In xeric environments, efficient location of ephemeral water is crucial to capitalize on this rare, critical resource. Yet little is known about how organisms locate water, though it has been acknowledged that olfactory spatial navigation may benefit water searching in xeric-adapted species. Additionally, drinking behavior may be influenced by water salinity as consuming water with salinity levels that exceed blood osmolality can induce or exacerbate dehydration. To investigate whether animals can locate water via olfaction, whether salinity affects the amount of water consumed, and whether the extent of dehydration affects both processes, I conducted three experiments in a xeric-adapted reptile, the Gila monster (Heloderma suspectum). Two experiments used a T-maze to examine the effects of various olfactory cues and hydration state on spatial navigation to water resources, while the third experiment examined willingness to drink water of various salinity levels depending on the extent of dehydration. I found that Gila monsters accurately navigated to olfactory cues associated with aged tap water, but not other olfactory cues (pond water, geosmin/MIB, IBMP/IPMP). Increased extent of dehydration correlated with greater spatial navigation efficiency but did not meaningfully impact navigation accuracy. Moderately dehydrated Gila monsters selectively consumed water with lower salinity levels (freshwater, 1,250 ppm, and 2,500 ppm) and avoided highly saline water resources (10,000 ppm and 20,000 ppm). However, considerably dehydrated animals demonstrated an increased propensity to consume water with higher salinity levels. These results provide evidence for olfactory spatial navigation and selective consumption of saline water as strategies to locate water and efficiently osmoregulate in an osmotically challenging environment. These findings underscore the observed adaptable physiological and behavioral traits Gila monsters and other xeric-adapted species use to endure the seasonal water limitations.
ContributorsNorthrop, Victoria (Author) / DeNardo, Dale F (Thesis advisor) / Gerber, Leah R (Committee member) / Martins, Emilia P (Committee member) / Arizona State University (Publisher)
Created2024
187605-Thumbnail Image.png
Description
The migratory grasshopper (Melanoplus sanguinipes) is one of the most economically important grasshoppers in the western rangelands of the United States (US), capable of causing incredible amounts of damage to crops and rangelands. While M. sanguinipes has been the focus of many research studies, areas like field nutritional physiology and

The migratory grasshopper (Melanoplus sanguinipes) is one of the most economically important grasshoppers in the western rangelands of the United States (US), capable of causing incredible amounts of damage to crops and rangelands. While M. sanguinipes has been the focus of many research studies, areas like field nutritional physiology and ecology, and interactions between nutritional physiology and biopesticide resistance have very little research. This dissertation presents a multifaceted approach through three research-driven chapters that examine the nutritional physiology of M. sanguinipes and how it interacts with an entomopathogenic fungus for grasshopper management, as well as the challenges of using biopesticides for grasshopper management. Using the Geometric Framework for Nutrition (GFN), I established baseline macronutrient intake for M. sanguinipes, both in laboratory and field populations. Through this work, I found that field and lab populations can exhibit different protein (p) to carbohydrate (c) ratios, or Intake Targets (ITs), but that the field populations had ITs that matched the nutrients available in their environment. I also used the GFN to show that infections with the fungal entomopathogen Metarhizium robertsii DWR2009 did not alter ITs in M. sanguinipes. Although, when confined to carbohydrate- or protein-biased diets, infected grasshoppers had a slightly extended lifespan relative to grasshoppers fed balanced protein:carbohydrate diets. Interestingly, in a postmortem for the grasshopper, the fungus was only able to effectively sporulate on grasshoppers fed the 1p:1c diets, suggesting that grasshopper diet can have substantial impacts on the spread of fungal biopesticides throughout a population, in the absence of any inhibitory abiotic factors. Lastly, I examined the major barriers to fungal and microsporidian biopesticide usage in the United States, including low efficacy, thermal and environmental sensitivity, non-target effects, unregistered or restricted use, and economic or accessibility barriers. I also explored potential solutions to these challenges. This dissertation's focus on Melanoplus sanguinipes and Metarhizium roberstii Strain DWR2009, generates new information about how nutritional physiology and immunology intersect to impact M. sanguinipes performance. The methodology in each of the experimental chapters provides a framework for examining other problematic grasshopper species, by determining baseline nutritional physiology, and coupling nutrition with immunology to maximize the effectiveness of biological pesticides.
ContributorsZembrzuski, Deanna (Author) / Cease, Arianne (Thesis advisor) / Harrison, Jon (Committee member) / Angilletta, Michael (Committee member) / Jaronski, Stefan (Committee member) / Arizona State University (Publisher)
Created2023
153959-Thumbnail Image.png
Description
Sexual and social signals have long been thought to play an important role in speciation and diversity; hence, investigations of intraspecific communication may lead to important insights regarding key processes of evolution. Though we have learned much about the control, function, and evolution of animal communication by studying several very

Sexual and social signals have long been thought to play an important role in speciation and diversity; hence, investigations of intraspecific communication may lead to important insights regarding key processes of evolution. Though we have learned much about the control, function, and evolution of animal communication by studying several very common signal types, investigating rare classes of signals may provide new information about how and why animals communicate. My dissertation research focused on rapid physiological color change, a rare signal-type used by relatively few taxa. To answer longstanding questions about this rare class of signals, I employed novel methods to measure rapid color change signals of male veiled chameleons Chamaeleo calyptratus in real-time as seen by the intended conspecific receivers, as well as the associated behaviors of signalers and receivers. In the context of agonistic male-male interactions, I found that the brightness achieved by individual males and the speed of color change were the best predictors of aggression and fighting ability. Conversely, I found that rapid skin darkening serves as a signal of submission for male chameleons, reducing aggression from winners when displayed by losers. Additionally, my research revealed that the timing of maximum skin brightness and speed of brightening were the best predictors of maximum bite force and circulating testosterone levels, respectively. Together, these results indicated that different aspects of color change can communicate information about contest strategy, physiology, and performance ability. Lastly, when I experimentally manipulated the external appearance of chameleons, I found that "dishonestly" signaling individuals (i.e. those whose behavior did not match their manipulated color) received higher aggression from unpainted opponents. The increased aggression received by dishonest signalers suggests that social costs play an important role in maintaining the honesty of rapid color change signals in veiled chameleons. Though the color change abilities of chameleons have interested humans since the time of Aristotle, little was previously known about the signal content of such changes. Documenting the behavioral contexts and information content of these signals has provided an important first step in understanding the current function, underlying control mechanisms, and evolutionary origins of this rare signal type.
ContributorsLigon, Russell (Author) / McGraw, Kevin J. (Committee member) / DeNardo, Dale F (Committee member) / Karsten, Kristopher B (Committee member) / Rutowski, Ronald L (Committee member) / Deviche, Pierre (Committee member) / Arizona State University (Publisher)
Created2015
154237-Thumbnail Image.png
Description
In desert riparian ecosystems, rivers provide free water but access to that water diminishes with distance producing a steep gradient in the relative importance of water for growth and reproduction of riparian animals and hence, their biodiversity. Previous work suggests that water limited riparian predators eat more prey to meet

In desert riparian ecosystems, rivers provide free water but access to that water diminishes with distance producing a steep gradient in the relative importance of water for growth and reproduction of riparian animals and hence, their biodiversity. Previous work suggests that water limited riparian predators eat more prey to meet their water demand where free water is not available. Here I explore the effect of water limitation on prey selection and per capita interaction strengths between a predatory spider ( Hogna antelucana) and two prey species occupying different trophic levels using a controlled field experiment conducted in the riparian forest of the San Pedro River, Cochise County, AZ. Lab measurements of water and energy content revealed that intermediate predators (smaller spiders in the genus Pardosa) had 100-fold higher energy: water ratios than an alternate prey species more basal in the food web (crickets in the genus Gryllus). Given this observation, I hypothesized that water-stressed predatory wolf spiders would select more water-laden crickets but switch to more energy rich Pardosa when water stress was experimentally eliminated. Additionally, I hypothesized that switching by quenched Hogna to Pardosa would reduce predation by Pardosa on Gryllus leading to increased abundance of the basal resource. Finally, I hypothesized that water mediated switching and release of basal prey would be stronger when male Hogna was the apex predator, because female Hogna have higher energetic costs of reproduction and hence, stronger energy limitation. Experimental water additions caused both sexes of Hogna to consume significantly higher numbers of Pardosa but this difference (between water and no-water treatments) did not vary significantly between male and female Hogna treatments. Similarly, strong negative interaction strengths between Hogna and Pardosa led to release of the basal prey species and positive interaction strengths of Hogna on Gryllus. Again strong positive, indirect effects of Hogna on Gryllus did not depend on the sex of the Hogna predator. However, water mediated indirect effects of Hogna (either sex) on Gryllus were the strongest for male Gryllus. These results suggest that water and energy co-dominate foraging decisions by predators and that in managing water-energy balance; predators can modify interaction pathways, sex-ratios of prey populations and trophic dynamics.
ContributorsLeinbach, Israel (Author) / Sabo, John (Thesis advisor) / Harrison, Jon (Committee member) / Johnson, Chadwick (Committee member) / Arizona State University (Publisher)
Created2015