Matching Items (42)
Filtering by

Clear all filters

149904-Thumbnail Image.png
Description
Computed tomography (CT) is one of the essential imaging modalities for medical diagnosis. Since its introduction in 1972, CT technology has been improved dramatically, especially in terms of its acquisition speed. However, the main principle of CT which consists in acquiring only density information has not changed at all

Computed tomography (CT) is one of the essential imaging modalities for medical diagnosis. Since its introduction in 1972, CT technology has been improved dramatically, especially in terms of its acquisition speed. However, the main principle of CT which consists in acquiring only density information has not changed at all until recently. Different materials may have the same CT number, which may lead to uncertainty or misdiagnosis. Dual-energy CT (DECT) was reintroduced recently to solve this problem by using the additional spectral information of X-ray attenuation and aims for accurate density measurement and material differentiation. However, the spectral information lies in the difference between two low and high energy images or measurements, so that it is difficult to acquire the accurate spectral information due to amplification of high pixel noise in the resulting difference image. In this work, a new model and an image enhancement technique for DECT are proposed, based on the fact that the attenuation of a high density material decreases more rapidly as X-ray energy increases. This fact has been previously ignored in most of DECT image enhancement techniques. The proposed technique consists of offset correction, spectral error correction, and adaptive noise suppression. It reduced noise, improved contrast effectively and showed better material differentiation in real patient images as well as phantom studies.
ContributorsPark, Kyung Kook (Author) / Metin, Akay (Thesis advisor) / Pavlicek, William (Committee member) / Akay, Yasemin (Committee member) / Towe, Bruce (Committee member) / Muthuswamy, Jitendran (Committee member) / Arizona State University (Publisher)
Created2011
150069-Thumbnail Image.png
Description
Phase contrast magnetic resonance angiography (PCMRA) is a non-invasive imaging modality that is capable of producing quantitative vascular flow velocity information. The encoding of velocity information can significantly increase the imaging acquisition and reconstruction durations associated with this technique. The purpose of this work is to provide mechanisms for reducing

Phase contrast magnetic resonance angiography (PCMRA) is a non-invasive imaging modality that is capable of producing quantitative vascular flow velocity information. The encoding of velocity information can significantly increase the imaging acquisition and reconstruction durations associated with this technique. The purpose of this work is to provide mechanisms for reducing the scan time of a 3D phase contrast exam, so that hemodynamic velocity data may be acquired robustly and with a high sensitivity. The methods developed in this work focus on the reduction of scan duration and reconstruction computation of a neurovascular PCMRA exam. The reductions in scan duration are made through a combination of advances in imaging and velocity encoding methods. The imaging improvements are explored using rapid 3D imaging techniques such as spiral projection imaging (SPI), Fermat looped orthogonally encoded trajectories (FLORET), stack of spirals and stack of cones trajectories. Scan durations are also shortened through the use and development of a novel parallel imaging technique called Pretty Easy Parallel Imaging (PEPI). Improvements in the computational efficiency of PEPI and in general MRI reconstruction are made in the area of sample density estimation and correction of 3D trajectories. A new method of velocity encoding is demonstrated to provide more efficient signal to noise ratio (SNR) gains than current state of the art methods. The proposed velocity encoding achieves improved SNR through the use of high gradient moments and by resolving phase aliasing through the use measurement geometry and non-linear constraints.
ContributorsZwart, Nicholas R (Author) / Frakes, David H (Thesis advisor) / Pipe, James G (Thesis advisor) / Bennett, Kevin M (Committee member) / Debbins, Josef P (Committee member) / Towe, Bruce (Committee member) / Arizona State University (Publisher)
Created2011
152340-Thumbnail Image.png
Description
A noninvasive optical method is developed to monitor rapid changes in blood glucose levels in diabetic patients. The system depends on an optical cell built with a LED that emits light of wavelength 535nm that is a peak absorbance of hemoglobin. As the glucose concentration in the blood decreases, its

A noninvasive optical method is developed to monitor rapid changes in blood glucose levels in diabetic patients. The system depends on an optical cell built with a LED that emits light of wavelength 535nm that is a peak absorbance of hemoglobin. As the glucose concentration in the blood decreases, its osmolarity also decreases and the RBCs swell and decrease the path length absorption coefficient. Decreasing absorption coefficient increases the transmission of light through the whole blood. The system was tested with a constructed optical cell that held whole blood in a capillary tube. As expected the light transmitted to the photodiode increases with decreasing glucose concentration. The average response time of the system was between 30-40 seconds. The changes in size of the RBC cells in response to glucose concentration changes were confirmed using a cell counter and also visually under microscope. This method does not allow measuring the glucose concentration with an absolute concentration calibration. It is directed towards development of a device to monitor the changes in glucose concentration as an aid to diabetic management. This method might be improvised for precision and resolution and be developed as a ring or an earring that patients can wear.
ContributorsRajan, Shiny Amala Priya (Author) / Towe, Bruce (Thesis advisor) / Muthuswamy, Jitendran (Committee member) / LaBelle, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2013
151656-Thumbnail Image.png
Description
Image resolution limits the extent to which zooming enhances clarity, restricts the size digital photographs can be printed at, and, in the context of medical images, can prevent a diagnosis. Interpolation is the supplementing of known data with estimated values based on a function or model involving some or all

Image resolution limits the extent to which zooming enhances clarity, restricts the size digital photographs can be printed at, and, in the context of medical images, can prevent a diagnosis. Interpolation is the supplementing of known data with estimated values based on a function or model involving some or all of the known samples. The selection of the contributing data points and the specifics of how they are used to define the interpolated values influences how effectively the interpolation algorithm is able to estimate the underlying, continuous signal. The main contributions of this dissertation are three fold: 1) Reframing edge-directed interpolation of a single image as an intensity-based registration problem. 2) Providing an analytical framework for intensity-based registration using control grid constraints. 3) Quantitative assessment of the new, single-image enlargement algorithm based on analytical intensity-based registration. In addition to single image resizing, the new methods and analytical approaches were extended to address a wide range of applications including volumetric (multi-slice) image interpolation, video deinterlacing, motion detection, and atmospheric distortion correction. Overall, the new approaches generate results that more accurately reflect the underlying signals than less computationally demanding approaches and with lower processing requirements and fewer restrictions than methods with comparable accuracy.
ContributorsZwart, Christine M. (Author) / Frakes, David H (Thesis advisor) / Karam, Lina (Committee member) / Kodibagkar, Vikram (Committee member) / Spanias, Andreas (Committee member) / Towe, Bruce (Committee member) / Arizona State University (Publisher)
Created2013
152241-Thumbnail Image.png
Description
The efficacy of deep brain stimulation (DBS) in Parkinson's disease (PD) has been convincingly demonstrated in studies that compare motor performance with and without stimulation, but characterization of performance at intermediate stimulation amplitudes has been limited. This study investigated the effects of changing DBS amplitude in order to assess dose-response

The efficacy of deep brain stimulation (DBS) in Parkinson's disease (PD) has been convincingly demonstrated in studies that compare motor performance with and without stimulation, but characterization of performance at intermediate stimulation amplitudes has been limited. This study investigated the effects of changing DBS amplitude in order to assess dose-response characteristics, inter-subject variability, consistency of effect across outcome measures, and day-to-day variability. Eight subjects with PD and bilateral DBS systems were evaluated at their clinically determined stimulation (CDS) and at three reduced amplitude conditions: approximately 70%, 30%, and 0% of the CDS (MOD, LOW, and OFF, respectively). Overall symptom severity and performance on a battery of motor tasks - gait, postural control, single-joint flexion-extension, postural tremor, and tapping - were assessed at each condition using the motor section of the Unified Parkinson's Disease Rating Scale (UPDRS-III) and quantitative measures. Data were analyzed to determine whether subjects demonstrated a threshold response (one decrement in stimulation resulted in ≥ 70% of the maximum change) or a graded response to reduced stimulation. Day-to-day variability was assessed using the CDS data from the three testing sessions. Although the cohort as a whole demonstrated a graded response on several measures, there was high variability across subjects, with subsets exhibiting graded, threshold, or minimal responses. Some subjects experienced greater variability in their CDS performance across the three days than the change induced by reducing stimulation. For several tasks, a subset of subjects exhibited improved performance at one or more of the reduced conditions. Reducing stimulation did not affect all subjects equally, nor did it uniformly affect each subject's performance across tasks. These results indicate that altered recruitment of neural structures can differentially affect motor capabilities and demonstrate the need for clinical consideration of the effects on multiple symptoms across several days when selecting DBS parameters.
ContributorsConovaloff, Alison (Author) / Abbas, James (Thesis advisor) / Krishnamurthi, Narayanan (Committee member) / Mahant, Padma (Committee member) / Jung, Ranu (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
152201-Thumbnail Image.png
Description
Coronary computed tomography angiography (CTA) has a high negative predictive value for ruling out coronary artery disease with non-invasive evaluation of the coronary arteries. My work has attempted to provide metrics that could increase the positive predictive value of coronary CTA through the use of dual energy CTA imaging. After

Coronary computed tomography angiography (CTA) has a high negative predictive value for ruling out coronary artery disease with non-invasive evaluation of the coronary arteries. My work has attempted to provide metrics that could increase the positive predictive value of coronary CTA through the use of dual energy CTA imaging. After developing an algorithm for obtaining calcium scores from a CTA exam, a dual energy CTA exam was performed on patients at dose levels equivalent to levels for single energy CTA with a calcium scoring exam. Calcium Agatston scores obtained from the dual energy CTA exam were within ±11% of scores obtained with conventional calcium scoring exams. In the presence of highly attenuating coronary calcium plaques, the virtual non-calcium images obtained with dual energy CTA were able to successfully measure percent coronary stenosis within 5% of known stenosis values, which is not possible with single energy CTA images due to the presence of the calcium blooming artifact. After fabricating an anthropomorphic beating heart phantom with coronary plaques, characterization of soft plaque vulnerability to rupture or erosion was demonstrated with measurements of the distance from soft plaque to aortic ostium, percent stenosis, and percent lipid volume in soft plaque. A classification model was developed, with training data from the beating heart phantom and plaques, which utilized support vector machines to classify coronary soft plaque pixels as lipid or fibrous. Lipid versus fibrous classification with single energy CTA images exhibited a 17% error while dual energy CTA images in the classification model developed here only exhibited a 4% error. Combining the calcium blooming correction and the percent lipid volume methods developed in this work will provide physicians with metrics for increasing the positive predictive value of coronary CTA as well as expanding the use of coronary CTA to patients with highly attenuating calcium plaques.
ContributorsBoltz, Thomas (Author) / Frakes, David (Thesis advisor) / Towe, Bruce (Committee member) / Kodibagkar, Vikram (Committee member) / Pavlicek, William (Committee member) / Bouman, Charles (Committee member) / Arizona State University (Publisher)
Created2013
151399-Thumbnail Image.png
Description
Millions of Americans live with motor impairments resulting from a stroke and the best way to administer rehabilitative therapy to achieve recovery is not well understood. Adaptive mixed reality rehabilitation (AMRR) is a novel integration of motion capture technology and high-level media computing that provides precise kinematic measurements and engaging

Millions of Americans live with motor impairments resulting from a stroke and the best way to administer rehabilitative therapy to achieve recovery is not well understood. Adaptive mixed reality rehabilitation (AMRR) is a novel integration of motion capture technology and high-level media computing that provides precise kinematic measurements and engaging multimodal feedback for self-assessment during a therapeutic task. The AMRR system was evaluated in a small (N=3) cohort of stroke survivors to determine best practices for administering adaptive, media-based therapy. A proof of concept study followed, examining changes in clinical scale and kinematic performances among a group of stroke survivors who received either a month of AMRR therapy (N = 11) or matched dosing of traditional repetitive task therapy (N = 10). Both groups demonstrated statistically significant improvements in Wolf Motor Function Test and upper-extremity Fugl-Meyer Assessment scores, indicating increased function after the therapy. However, only participants who received AMRR therapy showed a consistent improvement in their kinematic measurements, including those measured in the trained reaching task (reaching to grasp a cone) and in an untrained reaching task (reaching to push a lighted button). These results suggest that that the AMRR system can be used as a therapy tool to enhance both functionality and reaching kinematics that quantify movement quality. Additionally, the AMRR concepts are currently being transitioned to a home-based training application. An inexpensive, easy-to-use, toolkit of tangible objects has been developed to sense, assess and provide feedback on hand function during different functional activities. These objects have been shown to accurately and consistently track hand function in people with unimpaired movements and will be tested with stroke survivors in the future.
ContributorsDuff, Margaret Rose (Author) / Rikakis, Thanassis (Thesis advisor) / He, Jiping (Thesis advisor) / Herman, Richard (Committee member) / Kleim, Jeffrey (Committee member) / Santos, Veronica (Committee member) / Towe, Bruce (Committee member) / Arizona State University (Publisher)
Created2012
152400-Thumbnail Image.png
Description
Advances in implantable MEMS technology has made possible adaptive micro-robotic implants that can track and record from single neurons in the brain. Development of autonomous neural interfaces opens up exciting possibilities of micro-robots performing standard electrophysiological techniques that would previously take researchers several hundred hours to train and achieve the

Advances in implantable MEMS technology has made possible adaptive micro-robotic implants that can track and record from single neurons in the brain. Development of autonomous neural interfaces opens up exciting possibilities of micro-robots performing standard electrophysiological techniques that would previously take researchers several hundred hours to train and achieve the desired skill level. It would result in more reliable and adaptive neural interfaces that could record optimal neural activity 24/7 with high fidelity signals, high yield and increased throughput. The main contribution here is validating adaptive strategies to overcome challenges in autonomous navigation of microelectrodes inside the brain. The following issues pose significant challenges as brain tissue is both functionally and structurally dynamic: a) time varying mechanical properties of the brain tissue-microelectrode interface due to the hyperelastic, viscoelastic nature of brain tissue b) non-stationarities in the neural signal caused by mechanical and physiological events in the interface and c) the lack of visual feedback of microelectrode position in brain tissue. A closed loop control algorithm is proposed here for autonomous navigation of microelectrodes in brain tissue while optimizing the signal-to-noise ratio of multi-unit neural recordings. The algorithm incorporates a quantitative understanding of constitutive mechanical properties of soft viscoelastic tissue like the brain and is guided by models that predict stresses developed in brain tissue during movement of the microelectrode. An optimal movement strategy is developed that achieves precise positioning of microelectrodes in the brain by minimizing the stresses developed in the surrounding tissue during navigation and maximizing the speed of movement. Results of testing the closed-loop control paradigm in short-term rodent experiments validated that it was possible to achieve a consistently high quality SNR throughout the duration of the experiment. At the systems level, new generation of MEMS actuators for movable microelectrode array are characterized and the MEMS device operation parameters are optimized for improved performance and reliability. Further, recommendations for packaging to minimize the form factor of the implant; design of device mounting and implantation techniques of MEMS microelectrode array to enhance the longevity of the implant are also included in a top-down approach to achieve a reliable brain interface.
ContributorsAnand, Sindhu (Author) / Muthuswamy, Jitendran (Thesis advisor) / Tillery, Stephen H (Committee member) / Buneo, Christopher (Committee member) / Abbas, James (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2013
Description
This research investigated using impedance as a minimally invasive oral cancer-screening tool by modeling healthy and diseased tissue. This research developed an ultra-structurally based tissue model for oral mucosa that is versatile enough to be easily modified to mimic the passive electrical impedance responses of multiple benign and cancerous tissue

This research investigated using impedance as a minimally invasive oral cancer-screening tool by modeling healthy and diseased tissue. This research developed an ultra-structurally based tissue model for oral mucosa that is versatile enough to be easily modified to mimic the passive electrical impedance responses of multiple benign and cancerous tissue types. This new model provides answers to biologically meaningful questions related to the impedance response of healthy and diseased tissues. This model breaks away from the old empirical top down "black box" Thèvinin equivalent model. The new tissue model developed here was created from a bottom up perspective resulting in a model that is analogous to having a "Transparent Box" where each network element relating to a specific structural component is known. This new model was developed starting with sub cellular ultra-structural components such as membranes, proteins and electrolytes. These components formed the basic network elements and topology of the organelles. The organelle networks combine to form the cell networks. The cell networks combine to make networks of cell layers and the cell layers were combined into tissue networks. This produced the complete "Transparent Box" model for normal tissue. This normal tissue model was modified for disease based on the ultra-structural pathology of each disease. The diseased tissues evaluated include cancers type one through type three; necrotic-inflammation, hyperkeratosis and the compound condition of hyperkeratosis over cancer type two. The impedance responses for each of the disease were compared side by side with the response of normal healthy tissue. Comparative evidence from the models showed the structural changes in cancer produce a unique identifiable impedance "finger print." The evaluation of the "Transparent Box" model for normal tissues and diseased tissues show clear support for using comparative impedance measurements as a clinical tool for oral cancer screening.
ContributorsPelletier, Peter Robert (Author) / Kozicki, Michael (Thesis advisor) / Towe, Bruce (Committee member) / Saraniti, Marco (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2012
151099-Thumbnail Image.png
Description
Spinal cord injury (SCI) disrupts the communication between supraspinal circuits and spinal circuits distal to the injury. This disruption causes changes in the motor abilities of the affected individual, but it can also be used as an opportunity to study motor control in the absence or limited presence of control

Spinal cord injury (SCI) disrupts the communication between supraspinal circuits and spinal circuits distal to the injury. This disruption causes changes in the motor abilities of the affected individual, but it can also be used as an opportunity to study motor control in the absence or limited presence of control from the brain. In the case of incomplete paraplegia, locomotion is impaired and often results in increased incidence of foot drag and decreased postural stability after injury. The overall goal of this work is to understand how changes in kinematics of movement and neural control of muscles effect locomotor coordination following SCI. Toward this end, we examined musculoskeletal parameters and kinematics of gait in rats with and without incomplete SCI (iSCI) and used an empirically developed computational model to test related hypotheses. The first study tested the hypothesis that iSCI causes a decrease in locomotor and joint angle movement complexity. A rat model was used to measure musculoskeletal properties and gait kinematics following mild iSCI. The data indicated joint-specific changes in kinematics in the absence of measurable muscle atrophy, particularly at the ankle as a result of the injury. Kinematic changes manifested as a decrease in complexity of ankle motion as indicated by measures of permutation entropy. In the second study, a new 2-dimensional computational model of the rat ankle combining forward and inverse dynamics was developed using the previously collected data. This model was used to test the hypothesis that altered coordination of flexor and extensor muscles (specifically alteration in burst shape and timing) acting at the ankle joint could be responsible for increases in incidence of foot drag following injury. Simulation results suggest a time course for changes in neural control following injury that begins with foot drag and decreased delay between antagonistic muscle activations. Following this, beneficial adaptations in muscle activation profile and ankle kinematics counteract the decreased delay to allow foot swing. In both studies, small changes in neural control caused large changes in behavior, particularly at the ankle. Future work will further examine the role of neural control of hindlimb in rat locomotion following iSCI.
ContributorsHillen, Brian (Author) / Jung, Ranu (Thesis advisor) / Abbas, James (Committee member) / Muthuswamy, Jit (Committee member) / Jindrich, Devin (Committee member) / Yamaguchi, Gary (Committee member) / Arizona State University (Publisher)
Created2012