Matching Items (38)
Filtering by

Clear all filters

152103-Thumbnail Image.png
Description
Each year, millions of aging women will experience menopause, a transition from reproductive capability to reproductive senescence. In women, this transition is characterized by depleted ovarian follicles, declines in levels of sex hormones, and a dysregulation of gonadotrophin feedback loops. Consequently, menopause is accompanied by hot flashes, urogenital atrophy, cognitive

Each year, millions of aging women will experience menopause, a transition from reproductive capability to reproductive senescence. In women, this transition is characterized by depleted ovarian follicles, declines in levels of sex hormones, and a dysregulation of gonadotrophin feedback loops. Consequently, menopause is accompanied by hot flashes, urogenital atrophy, cognitive decline, and other symptoms that reduce quality of life. To ameliorate these negative consequences, estrogen-containing hormone therapy is prescribed. Findings from clinical and pre-clinical research studies suggest that menopausal hormone therapies can benefit memory and associated neural substrates. However, findings are variable, with some studies reporting null or even detrimental cognitive and neurobiological effects of these therapies. Thus, at present, treatment options for optimal cognitive and brain health outcomes in menopausal women are limited. As such, elucidating factors that influence the cognitive and neurobiological effects of menopausal hormone therapy represents an important need relevant to every aging woman. To this end, work in this dissertation has supported the hypothesis that multiple factors, including post-treatment circulating estrogen levels, experimental handling, type of estrogen treatment, and estrogen receptor activity, can impact the realization of cognitive benefits with Premarin hormone therapy. We found that the dose-dependent working memory benefits of subcutaneous Premarin administration were potentially regulated by the ratios of circulating estrogens present following treatment (Chapter 2). When we administered Premarin orally, it impaired memory (Chapter 3). Follow-up studies revealed that this impairment was likely due to the handling associated with treatment administration and the task difficulty of the memory measurement used (Chapters 3 and 4). Further, we demonstrated that the unique cognitive impacts of estrogens that become increased in circulation following Premarin treatments, such as estrone (Chapter 5), and their interactions with the estrogen receptors (Chapter 6), may influence the realization of hormone therapy-induced cognitive benefits. Future directions include assessing the mnemonic effects of: 1) individual biologically relevant estrogens and 2) clinically-used bioidentical hormone therapy combinations of estrogens. Taken together, information gathered from these studies can inform the development of novel hormone therapies in which these parameters are optimized.
ContributorsEngler-Chiurazzi, Elizabeth (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Sanabria, Federico (Committee member) / Olive, Michael F (Committee member) / Hoffman, Steven (Committee member) / Arizona State University (Publisher)
Created2013
152061-Thumbnail Image.png
Description
Most people are experts in some area of information; however, they may not be knowledgeable about other closely related areas. How knowledge is generalized to hierarchically related categories was explored. Past work has found little to no generalization to categories closely related to learned categories. These results do not fit

Most people are experts in some area of information; however, they may not be knowledgeable about other closely related areas. How knowledge is generalized to hierarchically related categories was explored. Past work has found little to no generalization to categories closely related to learned categories. These results do not fit well with other work focusing on attention during and after category learning. The current work attempted to merge these two areas of by creating a category structure with the best chance to detect generalization. Participants learned order level bird categories and family level wading bird categories. Then participants completed multiple measures to test generalization to old wading bird categories, new wading bird categories, owl and raptor categories, and lizard categories. As expected, the generalization measures converged on a single overall pattern of generalization. No generalization was found, except for already learned categories. This pattern fits well with past work on generalization within a hierarchy, but do not fit well with theories of dimensional attention. Reasons why these findings do not match are discussed, as well as directions for future research.
ContributorsLancaster, Matthew E (Author) / Homa, Donald (Thesis advisor) / Glenberg, Arthur (Committee member) / Chi, Michelene (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2013
152072-Thumbnail Image.png
Description
When a rolling ball exits a spiral tube, it typically maintains its final inertial state and travels along straight line in concordance with Newton's first law of motion. Yet, most people predict that the ball will curve, a "naive physics" misconception called the curvilinear impetus (CI) bias. In the current

When a rolling ball exits a spiral tube, it typically maintains its final inertial state and travels along straight line in concordance with Newton's first law of motion. Yet, most people predict that the ball will curve, a "naive physics" misconception called the curvilinear impetus (CI) bias. In the current paper, we explore the ecological hypothesis that the CI bias arises from overgeneralization of correct motion of biological agents. Previous research has established that humans curve when exiting a spiral maze, and college students believe this motion is the same for balls and humans. The current paper consists of two follow up experiments. The first experiment tested the exiting behavior of rodents from a spiral rat maze. Though there were weaknesses in design and procedures of the maze, the findings support that rats do not behave like humans who exhibit the CI bias when exiting a spiral maze. These results are consistent with the CI bias being an overgeneralization of human motion, rather than generic biological motion. The second experiment tested physics teachers on their conception of how a humans and balls behave when exiting a spiral tube. Teachers demonstrated correct knowledge of the straight trajectory of a ball, but generalized the ball's behavior to human motion. Thus physics teachers exhibit the opposite bias from college students and presume that all motion is like inanimate motion. This evidence supports that this type of naive physics inertial bias is at least partly due to participants overgeneralizing both inanimate and animate motion to be the same, perhaps in an effort to minimize cognitive reference memory load. In short, physics training appears not to eliminate the bias, but rather to simply shift it from the presumption of stereotypical animate to stereotypical inanimate behavior.
ContributorsDye, Rosaline (Author) / Mcbeath, Michael K (Thesis advisor) / Sanabria, Federico (Committee member) / Megowan, Colleen (Committee member) / Arizona State University (Publisher)
Created2013
152325-Thumbnail Image.png
Description
The brain is a fundamental target of the stress response that promotes adaptation and survival but the repeated activation of the stress response has the potential alter cognition, emotion, and motivation, key functions of the limbic system. Three structures of the limbic system in particular, the hippocampus, medial prefrontal cortex

The brain is a fundamental target of the stress response that promotes adaptation and survival but the repeated activation of the stress response has the potential alter cognition, emotion, and motivation, key functions of the limbic system. Three structures of the limbic system in particular, the hippocampus, medial prefrontal cortex (mPFC), and amygdala, are of special interest due to documented structural changes and their implication in post-traumatic stress disorder (PTSD). One of many notable chronic stress-induced changes include dendritic arbor restructuring, which reflect plasticity patterns in parallel with the direction of alterations observed in functional imaging studies in PTSD patients. For instance, chronic stress produces dendritic retraction in the hippocampus and mPFC, but dendritic hypertrophy in the amygdala, consistent with functional imaging in patients with PTSD. Some have hypothesized that these limbic region's modifications contribute to one's susceptibility to develop PTSD following a traumatic event. Consequently, we used a familiar chronic stress procedure in a rat model to create a vulnerable brain that might develop traits consistent with PTSD when presented with a challenge. In adult male rats, chronic stress by wire mesh restraint (6h/d/21d) was followed by a variety of behavioral tasks including radial arm water maze (RAWM), fear conditioning and extinction, and fear memory reconsolidation to determine chronic stress effects on behaviors mediated by these limbic structures. In chapter 2, we corroborated past findings that chronic stress caused hippocampal CA3 dendritic retraction. Importantly, we present new findings that CA3 dendritic retraction corresponded with poor spatial memory in the RAWM and that these outcomes reversed after a recovery period. In chapter 3, we also showed that chronic stress impaired mPFC-mediated extinction memory, findings that others have reported. Using carefully assessed behavior, we present new findings that chronic stress impacted nonassociative fear by enhancing contextual fear during extinction that generalized to a new context. Moreover, the generalization behavior corresponded with enhanced functional activation in the hippocampus and amygdala during fear extinction memory retrieval. In chapter 5, we showed for the first time that chronic stress enhanced amygdala functional activation during fear memory retrieval, i.e., reactivation. Moreover, these enhanced fear memories were resistant to protein synthesis interference to disrupt a previously formed memory, called reconsolidation in a novel attempt to weaken chronic stress enhanced traumatic memory. Collectively, these studies demonstrated the plastic and dynamic effects of chronic stress on limbic neurocircuitry implicated in PTSD. We showed that chronic stress created a structural and functional imbalance across the hippocampus, mPFC, and amygdala, which lead to a PTSD-like phenotype with persistent and exaggerated fear following fear conditioning. These behavioral disruptions in conjunction with morphological and functional imaging data reflect a chronic stress-induced imbalance between hippocampal and mPFC regulation in favor of amygdala function overdrive, and supports a novel approach for traumatic memory processing in PTSD.
ContributorsHoffman, Ann (Author) / Conrad, Cheryl D. (Thesis advisor) / Olive, M. Foster (Committee member) / Hammer, Jr., Ronald P. (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2013
152966-Thumbnail Image.png
Description
Patients with schizophrenia have impaired cognitive flexibility, as evidenced by behaviors of perseveration. Cognitive impairments may be due to dysregulation of glutamate and/or loss of neuronal plasticity in the medial prefrontal cortex (mPFC). The purpose of these studies was to examine the effects of mGluR5 positive allosteric modulators (PAMs) alone

Patients with schizophrenia have impaired cognitive flexibility, as evidenced by behaviors of perseveration. Cognitive impairments may be due to dysregulation of glutamate and/or loss of neuronal plasticity in the medial prefrontal cortex (mPFC). The purpose of these studies was to examine the effects of mGluR5 positive allosteric modulators (PAMs) alone and in combination with the NMDAR antagonist MK-801, a pharmacological model of schizophrenia. An operant-based cognitive set-shifting task was utilized to assess cognitive flexibility, in vivo microdialysis procedures to measure extracellular glutamate levels in the mPFC, and diolistic labeling to assess the effects on dendritic spine density and morphology in the mPFC. Results revealed that chronic administration of the mGluR5 PAM CDPPB was able to significantly reduce the effects of chronically administered MK-801 on both behavioral perseveration and glutamate neurotransmission. Results also showed that CDPPB had no evidence of an effect on dendritic spine density or morphology, but the mGluR5 negative allosteric modulator fenobam caused significant increases in spine density and the frequency of occurrence of spines with smaller head diameters. Conclusions include that CDPPB is able to reverse MK-801 induced cognitive deficits as well as alterations in mPFC glutamate neurochemistry. The culmination of these studies add further support for targeting mGluR5 with PAMs as a novel mechanism to alleviate cognitive impairments in patients with schizophrenia.
ContributorsLaCrosse, Amber (Author) / Olive, Michael (Committee member) / Gallitano-Mendel, Amelia (Committee member) / Sanabria, Federico (Committee member) / Hammer, Ronald (Committee member) / Arizona State University (Publisher)
Created2014
152889-Thumbnail Image.png
Description
The unpleasant bitter taste found in many nutritious vegetables may deter their consumption. While bitterness suppression by prototypical tastants is well-studied in the chemical and pharmacological fields, mechanisms to reduce the bitterness of foods such as vegetables remain to be elucidated. Here tastants representing the taste primaries of

The unpleasant bitter taste found in many nutritious vegetables may deter their consumption. While bitterness suppression by prototypical tastants is well-studied in the chemical and pharmacological fields, mechanisms to reduce the bitterness of foods such as vegetables remain to be elucidated. Here tastants representing the taste primaries of salty and sweet were investigated as potential bitterness suppressors of three types of Brassicaceae vegetables. The secondary aim of these studies was to determine whether the bitter masking agents were differentially effective for bitter-sensitive and bitter-insensitive individuals. In all experiments, participants rated vegetables plain and with the addition of tastants. In Experiments 1-3, sucrose and NNS suppressed the bitterness of broccoli, Brussels sprouts, and cauliflower, whereas NaCl did not. Varying concentrations of NaCl and sucrose were introduced in Experiment 4 to assess the dose-dependency of the effects. While sucrose was a robust bitterness suppressor, NaCl suppressed bitterness only for participants who perceived the plain Brussels sprouts as highly bitter. Experiment 5, through the implementation of a rigorous control condition, determined that some but not all of this effect can be accounted for by regression to the mean. Individual variability in taste perception as determined by sampling of aqueous bitter, salty, and sweet solutions did not influence the degree of suppression by NaCl or sucrose. Consumption of vegetables is deterred by their bitter taste. Utilizing tastants to mask bitterness, a technique that preserves endogenous nutrients, can circumvent this issue. Sucrose is a robust bitter suppressor whereas the efficacy of NaCl is dependent upon bitterness perception of the plain vegetables.
ContributorsWilkie, Lynn Melissa (Author) / Capaldi Phillips, Elizabeth D (Thesis advisor) / Cohen, Adam (Committee member) / Johnston, Carol (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2014
153548-Thumbnail Image.png
Description
Attachment relationships serve a variety of important functions for infants and adults. Despite the importance of attachment relationships in adults, the mechanisms that underlie the formation or maintenance of these kinds of relationships outside of romantic relationships remains chronically understudied. The current research investigated whether the mechanism of synchrony, which

Attachment relationships serve a variety of important functions for infants and adults. Despite the importance of attachment relationships in adults, the mechanisms that underlie the formation or maintenance of these kinds of relationships outside of romantic relationships remains chronically understudied. The current research investigated whether the mechanism of synchrony, which is associated with attachment formation in the parent-infant literature, may still be tied to attachment in adults. To measure this association, these studies showed participants videos to prime synchrony, and then measured activation of attachment concepts in a word completion task. The results of Experiment 1 showed that attachment style moderated the effects of the video prime such that those who were securely attached showed activation of attachment concepts while watching the Synchrony video. Those with a preoccupied attachment style showed activation of attachment concepts when they viewed the Asynchrony video. Those with a dismissive attachment style showed an unhypothesized activation of social distance concepts when viewing the Synchrony video. Experiment 2 suggested an overall effect of the Synchrony video on activation of attachment concepts. However, there was no effect of attachment style on these results. Limits of these studies and future directions are discussed.
ContributorsYee, Claire Ida (Author) / Shiota, Michelle L (Thesis advisor) / Neuberg, Steven L. (Committee member) / Kenrick, Douglas T. (Committee member) / Glenberg, Arthur (Committee member) / Arizona State University (Publisher)
Created2015
153549-Thumbnail Image.png
Description
An emerging literature on the relation between memory and importance has shown that people are able to selectively remember information that is more, relative to less important. Researchers in this field have operationalized importance by assigning value to the different information that participants are asked to study and remember. In

An emerging literature on the relation between memory and importance has shown that people are able to selectively remember information that is more, relative to less important. Researchers in this field have operationalized importance by assigning value to the different information that participants are asked to study and remember. In the present investigation I developed two experiments, using a slightly altered value-directed-remembering (VDR) paradigm, to investigate whether and how value modifies the dynamics of memory organization and search. Moreover, I asked participants to perform a surprise final free recall task in order to examine the effects of value in the recall dynamics of final free recall. In Experiment 1, I compared the recall dynamics of delayed and final free recall between a control and a value condition, in the latter of which numbers appeared next to words, in random order, denoting the value of remembering each word during recall. In Experiment 2, I manipulated the order of presentation of the values by adding an ascending and a descending condition where values were presented in either an ascending or a descending order, respectively. Overall, my results indicated that value affected several measures of delayed and final free recall, without, in most cases, taking away the serial position effects on those same measures.
ContributorsStefanidi, Aikaterini (Author) / Brewer, Gene A. (Thesis advisor) / Glenberg, Arthur (Committee member) / Goldinger, Stephen (Committee member) / Arizona State University (Publisher)
Created2015
153144-Thumbnail Image.png
Description
ABSTRACT

What does it mean to feel an emotion? The nature of emotional

experience has often been described in terms overall conscious experience, termed affect. However, even within affective research there are multiple contradicting theories about the nature and structure of affect. I propose that these contradictions are due to methodological issues

ABSTRACT

What does it mean to feel an emotion? The nature of emotional

experience has often been described in terms overall conscious experience, termed affect. However, even within affective research there are multiple contradicting theories about the nature and structure of affect. I propose that these contradictions are due to methodological issues in the empirical research examining these underlying dimensions. Furthermore, I propose that subjective emotional experience should be examined separately from overall affect. The current study attempts to address past methodological issues by focusing solely on emotional experiences, developing a comprehensive list of emotion items, and including a broad range of emotional experiences. In Study 1, participants were asked to recall an emotional experience and then report their experience of 76 different emotions during that experience. A factor analysis of the emotion ratings revealed a 5-factor categorical structure with categories of Joy, Anger, Sadness, Fear, and Shame/Jealousy. In Study 2, the 76 emotion words from Study 1 were compared in a semantic space derived from a large collection of text samples in an attempt to compare to the results of Study 1. A semantic space derived from a broad range of texts would reflect relationships of emotional concepts. Study 2 revealed a 1-factor structure, drastically different from the structure in Study 1. The implications from Study 2, however, are limited because of the limited range of literature that was used to create the semantic space in which the words were compared. Overall, the results from these studies suggest that subjective emotional experience should be treated as categorical.
ContributorsOsborne, Elizabeth (Author) / Shiota, Michelle N. (Thesis advisor) / Glenberg, Arthur (Committee member) / Neuberg, Steven (Committee member) / Becker, David V. (Committee member) / Arizona State University (Publisher)
Created2014
153152-Thumbnail Image.png
Description
Globally, addiction to stimulants such as methamphetamine (METH) remains a significant public health problem. Despite decades of research, no approved anti-relapse medications for METH or any illicit stimulant exist, and current treatment approaches suffer from high relapse rates. Recently, synthetic cathinones have also emerged as popular abused stimulants, leading to

Globally, addiction to stimulants such as methamphetamine (METH) remains a significant public health problem. Despite decades of research, no approved anti-relapse medications for METH or any illicit stimulant exist, and current treatment approaches suffer from high relapse rates. Recently, synthetic cathinones have also emerged as popular abused stimulants, leading to numerous incidences of toxicity and death. However, contrary to traditional illicit stimulants, very little is known about their addiction potential. Given the high relapse rates and lack of approved medications for METH addiction, chapters 2 and 3 of this dissertation assessed three different glutamate receptor ligands as potential anti-relapse medications following METH intravenous self-administration (IVSA) in rats. In chapters 4 through 7, using both IVSA and intracranial self-stimulation (ICSS) procedures, experiments assessed abuse liability of the popular synthetic cathinones 3,4-Methylenedioxypyrovalerone (MDPV) , methylone, α-pyrrolidinovalerophenone (α-PVP) and 4-methylethylcathinone (4-MEC). Results from these seminal studies suggest that these drugs possess similar abuse potential to traditional illicit stimulants such as METH, cocaine, and 3,4-methylenedioxymethamphetamine (MDMA). Finally, studies outlined in chapter 8 assessed the potential neurotoxic or adverse cognitive effects of METH and MDPV following IVSA procedures for the purpose of identifying potential novel pharmacotherapeutic targets. However, results of these final studies did not reveal neurotoxic or adverse cognitive effects when using similar IVSA procedural parameters that were sufficient for establishing addiction potential, suggesting that these parameters do not allow for sufficient drug intake to produce similar neurotoxicity or cognitive deficits reported in humans. Thus, these models may be inadequate for fully modeling the adverse neural and psychological consequences of stimulant addiction. Together, these studies support the notion for continued research into the abuse liability and toxicity of METH and synthetic cathinones and suggest that refinements to traditional IVSA models are needed for both more effective assessment of potential cognitive and neural deficits induced by these drugs and screening of potentially clinically efficacious pharmacotherapeutics.
ContributorsWatterson, Lucas (Author) / Olive, Michael F (Thesis advisor) / Czyzyk, Traci (Committee member) / Neisewander, Janet (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2014