Matching Items (22)
Filtering by

Clear all filters

193297-Thumbnail Image.png
Description
Autism spectrum disorder (ASD) is characterized by deficits in flexible cognition and social behavior. The most common atypical brain structure in ASD, the cerebellum, has multisynaptic connections through the cerebellar nuclei (CN) and thalamus to cognitive- and social-associated brain regions, yet formation and modulation of these pathways are not fully

Autism spectrum disorder (ASD) is characterized by deficits in flexible cognition and social behavior. The most common atypical brain structure in ASD, the cerebellum, has multisynaptic connections through the cerebellar nuclei (CN) and thalamus to cognitive- and social-associated brain regions, yet formation and modulation of these pathways are not fully understood. Additionally, a CN output mechanism, perineuronal nets (PNNs), structure and function are undefined. PNNs are specialized extracellular matrix structures whose appearance is associated with the end of the critical period of plasticity and have been implicated in learning and neurodevelopmental disorders, but their role in the CN during development is unknown.To examine the role of CN on cognition, CN activity was increased or decreased in both male and female mice using Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) from postnatal day 21-35. Learning and reversal was analyzed using a pairwise visual discrimination task. Social behavior was assessed using a classic three-chamber assay and analyzed using SLEAP (Social Leap Estimates Animal Poses). A marker of critical periods, perineuronal nets (PNNs), was examined to understand relationships between neural development and behavior. Interestingly, adolescent CN disruption did not alter task acquisition, yet correct choice reversal performance was dependent on DREADD manipulation and sex. CN inhibition improved reversal learning in males (5 days faster to criteria) and CN excitation improved female reversal learning (10 days faster to criteria) compared to controls. Analysis of social behavior revealed male social preference was abolished in CN manipulated groups, whereas females failed to demonstrate a social preference. Interestingly, CN manipulation in females regardless of direction, reduced PNN intensity, whereas in males only CN inhibition reduced PNN intensity. PNN intensity negatively correlated with reversal performance. CN PNN intensity showed no relation to social behavior. These data suggest chronic adolescent CN manipulation may have compensatory changes in PNN structure and CN output to improve reversal learning and PNN function was unrelated to social behavior. This study provides new evidence for CN in non-motor functions and sex-dependent differences in behavior and CN plasticity.
ContributorsLyle, Tristan (Author) / Verpeut, Jessica (Thesis advisor) / Sanabria, Federico (Committee member) / Newbern, Jason (Committee member) / Arizona State University (Publisher)
Created2024
156831-Thumbnail Image.png
Description
Timing performance is sensitive to fluctuations in time and motivation, thus interval timing and motivation are either inseparable or conflated processes. A behavioral systems model (e.g., Timberlake, 2000) of timing performance (Chapter 1) suggests that timing performance in externally-initiated (EI) procedures conflates behavioral modes differentially sensitive to motivation, but that

Timing performance is sensitive to fluctuations in time and motivation, thus interval timing and motivation are either inseparable or conflated processes. A behavioral systems model (e.g., Timberlake, 2000) of timing performance (Chapter 1) suggests that timing performance in externally-initiated (EI) procedures conflates behavioral modes differentially sensitive to motivation, but that response-initiated (RI) procedures potentially dissociate these behavioral modes. That is, timing performance in RI procedures is expected to not conflate these behavioral modes. According to the discriminative RI hypothesis, as initiating-responses become progressively discriminable from target responses, initiating-responses increasingly dissociate interval timing and motivation. Rats were trained in timing procedures in which a switch from a Short to a Long interval indexes timing performance (a latency-to-switch, LTS), and were then challenged with pre-feeding and extinction probes. In experiments 1 (Chapter 2) and 2 (Chapter 3), discriminability of initiating-responses was varied as a function of time, location, and form for rats trained in a switch-timing procedure. In experiment 3 (Chapter 4), the generalizability of the discriminative RI hypothesis was evaluated in rats trained in a temporal bisection procedure. In experiment 3, but not 1 and 2, RI enhanced temporal control of LTSs relative to EI. In experiments 1 and 2, the robustness of LTS medians to pre-feeding but not extinction increased with the discriminability of initiating-responses from target responses. In experiment 3, the mean LTS was robust to pre-feeding in EI and RI. In all three experiments, pre-feeding increased LTS variability in EI and RI. These results provide moderate support for the discriminative RI hypothesis, indicating that initiating-responses selectively and partially dissociate interval timing and motivation processes. Implications for the study of cognition and motivation processes are discussed (Chapter 5).
ContributorsDaniels, Carter W (Author) / Sanabria, Federico (Thesis advisor) / McClure, Samuel M. (Committee member) / Wynne, Clive D.L. (Committee member) / Olive, Michael F. (Committee member) / Arizona State University (Publisher)
Created2018
152966-Thumbnail Image.png
Description
Patients with schizophrenia have impaired cognitive flexibility, as evidenced by behaviors of perseveration. Cognitive impairments may be due to dysregulation of glutamate and/or loss of neuronal plasticity in the medial prefrontal cortex (mPFC). The purpose of these studies was to examine the effects of mGluR5 positive allosteric modulators (PAMs) alone

Patients with schizophrenia have impaired cognitive flexibility, as evidenced by behaviors of perseveration. Cognitive impairments may be due to dysregulation of glutamate and/or loss of neuronal plasticity in the medial prefrontal cortex (mPFC). The purpose of these studies was to examine the effects of mGluR5 positive allosteric modulators (PAMs) alone and in combination with the NMDAR antagonist MK-801, a pharmacological model of schizophrenia. An operant-based cognitive set-shifting task was utilized to assess cognitive flexibility, in vivo microdialysis procedures to measure extracellular glutamate levels in the mPFC, and diolistic labeling to assess the effects on dendritic spine density and morphology in the mPFC. Results revealed that chronic administration of the mGluR5 PAM CDPPB was able to significantly reduce the effects of chronically administered MK-801 on both behavioral perseveration and glutamate neurotransmission. Results also showed that CDPPB had no evidence of an effect on dendritic spine density or morphology, but the mGluR5 negative allosteric modulator fenobam caused significant increases in spine density and the frequency of occurrence of spines with smaller head diameters. Conclusions include that CDPPB is able to reverse MK-801 induced cognitive deficits as well as alterations in mPFC glutamate neurochemistry. The culmination of these studies add further support for targeting mGluR5 with PAMs as a novel mechanism to alleviate cognitive impairments in patients with schizophrenia.
ContributorsLaCrosse, Amber (Author) / Olive, Michael (Committee member) / Gallitano-Mendel, Amelia (Committee member) / Sanabria, Federico (Committee member) / Hammer, Ronald (Committee member) / Arizona State University (Publisher)
Created2014
153989-Thumbnail Image.png
Description
Social influences are important determinants of drug initiation in humans, particularly during adolescence and early adulthood. My dissertation tested three hypotheses: 1) conditioned and unconditioned nicotine and social rewards elicit unique patterns of neural signaling in the corticolimbic neurocircuitry when presented in combination versus individually; 2) play behavior is

Social influences are important determinants of drug initiation in humans, particularly during adolescence and early adulthood. My dissertation tested three hypotheses: 1) conditioned and unconditioned nicotine and social rewards elicit unique patterns of neural signaling in the corticolimbic neurocircuitry when presented in combination versus individually; 2) play behavior is not necessary for expression of social reward; and 3) social context enhances nicotine self-administration. To test the first hypothesis, Fos protein was measured in response to social and nicotine reward stimuli given alone or in combination and in response to environmental cues associated with the rewards in a conditioned place preference (CPP) test. Social-conditioned environmental stimuli attenuated Fos expression in the nucleus accumbens core. A social partner elevated Fos expression in the caudate-putamen, medial and central amygdala, and both nucleus accumbens subregions. Nicotine decreased Fos expression in the cingulate cortex, caudate-putamen, and the nucleus accumbens core. Both stimuli combined elevated Fos expression in the basolateral amygdala and ventral tegmental area, suggesting possible overlap in processing both rewards in these regions. I tested the second hypothesis with an apparatus containing compartments separated by a wire mesh barrier that allowed limited physical contact with a rat or object. While 2 pairings with a partner rat (full physical contact) produced robust CPP, additional pairings were needed for CPP with a partner behind a barrier or physical contact with an object (i.e., tennis ball). The results demonstrate that physical contact with a partner rat is not necessary to establish social-reward CPP. I tested the third hypothesis with duplex operant conditioning chambers separated either by a solid or a wire mesh barrier to allow for social interaction during self-administration sessions. Nicotine (0.015 and 0.03 mg/kg, IV) and saline self-administration were assessed in male and female young-adult rats either in the social context or isolation. Initially, a social context facilitated nicotine intake at the low dose in male rats, but suppressed intake in later sessions more strongly in female rats, suggesting that social factors exert strong sex-dependent influences on self-administration. These novel findings highlight the importance of social influences on several nicotine-related behavioral paradigms and associated neurocircuitry.
ContributorsPeartree, Natalie (Author) / Neisewander, Janet L (Thesis advisor) / Conrad, Cheryl D. (Committee member) / Nikulina, Ella M (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2015
154138-Thumbnail Image.png
Description
Theories of interval timing have largely focused on accounting for the aggregate properties of behavior engendered by periodic reinforcement, such as sigmoidal psychophysical functions and their scalar property. Many theories of timing also stipulate that timing and motivation are inseparable processes. Such a claim is challenged by fluctuations in and

Theories of interval timing have largely focused on accounting for the aggregate properties of behavior engendered by periodic reinforcement, such as sigmoidal psychophysical functions and their scalar property. Many theories of timing also stipulate that timing and motivation are inseparable processes. Such a claim is challenged by fluctuations in and out of states of schedule control, making it unclear whether motivation directly affects states related to timing. The present paper seeks to advance our understanding of timing performance by analyzing and comparing the distribution of latencies and inter-response times (IRTs) of rats in two fixed-interval (FI) schedules of food reinforcement (FI 30-s and FI 90-s), and in two levels of food deprivation. Computational modeling revealed that each component was well described by mixture probability distributions embodying two-state Markov chains. Analysis of these models revealed that only a subset of latencies are sensitive to the periodicity of reinforcement, and pre-feeding only reduces the size of this subset. The distribution of IRTs suggests that behavior in FI schedules is organized in bouts that lengthen and ramp up in frequency with proximity to reinforcement. Pre-feeding slowed down the lengthening of bouts and increased the time between bouts. When concatenated, these models adequately reproduced sigmoidal FI response functions. These findings suggest that behavior in FI fluctuates in and out of schedule control; an account of such fluctuation suggests that timing and motivation are dissociable components of FI performance. These mixture-distribution models also provide novel insights on the motivational, associative, and timing processes expressed in FI performance, which need to be accounted for by causal theories of interval timing.
ContributorsDaniels, Carter W (Author) / Sanabria, Federico (Thesis advisor) / Brewer, Gene (Committee member) / Wynne, Clive (Committee member) / Arizona State University (Publisher)
Created2015
154368-Thumbnail Image.png
Description
MicroRNAs are small, non-coding transcripts that post-transcriptionally regulate expression of multiple genes. Recently microRNAs have been linked to the etiology of neuropsychiatric disorders, including drug addiction. Following genome-wide sequence analyses, microRNA-495 (miR-495) was found to target several genes within the Knowledgebase of Addiction-Related Genes (KARG) database and to be highly

MicroRNAs are small, non-coding transcripts that post-transcriptionally regulate expression of multiple genes. Recently microRNAs have been linked to the etiology of neuropsychiatric disorders, including drug addiction. Following genome-wide sequence analyses, microRNA-495 (miR-495) was found to target several genes within the Knowledgebase of Addiction-Related Genes (KARG) database and to be highly expressed in the nucleus accumbens (NAc), a pivotal brain region involved in reward and motivation. The central hypothesis of this dissertation is that NAc miR-495 regulates drug abuse-related behavior by targeting several addiction-related genes (ARGs). I tested this hypothesis in two ways: 1) by examining the effects of viral-mediated miR-495 overexpression or inhibition in the NAc of rats on cocaine abuse-related behaviors and gene expression, and 2) by examining changes in NAc miR-495 and ARG expression as a result of brief (i.e., 1 day) or prolonged (i.e., 22 days) cocaine self-administration. I found that behavioral measures known to be sensitive to motivation for cocaine were attenuated by NAc miR-495 overexpression, including resistance to extinction of cocaine conditioned place preference (CPP), cocaine self-administration on a high effort progressive ratio schedule of reinforcement, and cocaine-seeking behavior during both extinction and cocaine-primed reinstatement. These effects appeared specific to cocaine, as there was no effect of NAc miR-495 overexpression on a progressive ratio schedule of food reinforcement. In contrast, behavioral measures known to be sensitive to cocaine reward were not altered, including expression of cocaine CPP and cocaine self-administration under a low effort FR5 schedule of reinforcement. Importantly, the effects were accompanied by decreases in NAc ARG expression, consistent with my hypothesis. In further support, I found that NAc miR-495 levels were reduced and ARG levels were increased in rats following prolonged, but not brief, cocaine self-administration experience. Surprisingly, inhibition of NAc miR-495 expression also decreased both cocaine-seeking behavior during extinction and NAc ARG expression, which may reflect compensatory changes or unexplained complexities in miR-495 regulatory effects. Collectively, the findings suggest that NAc miR-495 regulates ARG expression involved in motivation for cocaine. Therefore, using microRNAs as tools to target several ARGs simultaneously may be useful for future development of addiction therapeutics.
ContributorsBastle, Ryan (Author) / Neisewander, Janet (Thesis advisor) / Newbern, Jason (Committee member) / Nikulina, Ella (Committee member) / Perrone-Bizzozero, Nora (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2016
152889-Thumbnail Image.png
Description
The unpleasant bitter taste found in many nutritious vegetables may deter their consumption. While bitterness suppression by prototypical tastants is well-studied in the chemical and pharmacological fields, mechanisms to reduce the bitterness of foods such as vegetables remain to be elucidated. Here tastants representing the taste primaries of

The unpleasant bitter taste found in many nutritious vegetables may deter their consumption. While bitterness suppression by prototypical tastants is well-studied in the chemical and pharmacological fields, mechanisms to reduce the bitterness of foods such as vegetables remain to be elucidated. Here tastants representing the taste primaries of salty and sweet were investigated as potential bitterness suppressors of three types of Brassicaceae vegetables. The secondary aim of these studies was to determine whether the bitter masking agents were differentially effective for bitter-sensitive and bitter-insensitive individuals. In all experiments, participants rated vegetables plain and with the addition of tastants. In Experiments 1-3, sucrose and NNS suppressed the bitterness of broccoli, Brussels sprouts, and cauliflower, whereas NaCl did not. Varying concentrations of NaCl and sucrose were introduced in Experiment 4 to assess the dose-dependency of the effects. While sucrose was a robust bitterness suppressor, NaCl suppressed bitterness only for participants who perceived the plain Brussels sprouts as highly bitter. Experiment 5, through the implementation of a rigorous control condition, determined that some but not all of this effect can be accounted for by regression to the mean. Individual variability in taste perception as determined by sampling of aqueous bitter, salty, and sweet solutions did not influence the degree of suppression by NaCl or sucrose. Consumption of vegetables is deterred by their bitter taste. Utilizing tastants to mask bitterness, a technique that preserves endogenous nutrients, can circumvent this issue. Sucrose is a robust bitter suppressor whereas the efficacy of NaCl is dependent upon bitterness perception of the plain vegetables.
ContributorsWilkie, Lynn Melissa (Author) / Capaldi Phillips, Elizabeth D (Thesis advisor) / Cohen, Adam (Committee member) / Johnston, Carol (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2014
153683-Thumbnail Image.png
Description
ADHD is a childhood neurobehavioral disorder characterized by inordinate levels of hyperactivity, inattention and impulsivity. The inability to withhold a reinforced response, or response inhibition capacity (RIC), is one aspect of impulsivity associated with ADHD. The first goal of this dissertation was to evaluate the fixed minimum interval (FMI) schedule

ADHD is a childhood neurobehavioral disorder characterized by inordinate levels of hyperactivity, inattention and impulsivity. The inability to withhold a reinforced response, or response inhibition capacity (RIC), is one aspect of impulsivity associated with ADHD. The first goal of this dissertation was to evaluate the fixed minimum interval (FMI) schedule as a method for assessing RIC. Chapter 2 showed that latencies were substantially more sensitive than FMI-derived estimates of RIC to the effects of pre-feeding and changes in rate and magnitude of reinforcement. Chapter 3 examined the ability of the FMI to discriminate between spontaneously hypertensive rats (SHR), an animal model of ADHD, and Wistar Kyoto (WKY) controls. Results from Chapter 3 showed that RIC was not substantially different between SHR and WKY rats. However, latencies were significantly shorter for SHRs than for WKYs suggesting incentive motivation differed between strains. The second goal of this dissertation was to examine the sensitivity of the SHR to nicotine. ADHD is a risk factor for tobacco dependence. The goal of Chapters 4 and 5 was to determine whether the SHR provided a model of ADHD-related tobacco sensitivity. Chapter 4 examined nicotine's locomotor and rewarding effects in adolescent SHRs using the conditioned place preference (CPP) procedure. SHRs developed CPP to the highest nicotine dose tested and were sensitive to nicotine's locomotor-enhancing properties. WKY controls did not develop CPP to any nicotine dose tested and were not sensitive to nicotine's locomotor properties. However, it is likely that nicotine effects were obscured by a pseudo-conditioning to saline in WKYs. Chapter 5 demonstrated that SHRs were more active than WKYs in the open-field but not in the Rotorat apparatus. Results also showed that SHRs and WKYs were both sensitive to nicotine's locomotor sensitizing effects. However, WKYs were more sensitive than SHRs to nicotine's locomotor suppressing effects. Collectively, results from Chapters 4 and 5 show that SHRs are sensitive to the rewarding and locomotor-enhancing properties of nicotine. However, more research is necessary to confirm that SHRs are a suitable model for studying ADHD-related tobacco use.
ContributorsWatterson, Elizabeth (Author) / Sanabria, Federico (Thesis advisor) / Olive, Foster (Thesis advisor) / Chassin, Laurie (Committee member) / Neisewander, Janet (Committee member) / Arizona State University (Publisher)
Created2015
153634-Thumbnail Image.png
Description
People commonly make decisions and choices that could be delayed until a later time. This investigation examines two factors that may be especially important in these types of decisions: resource stability and comparison target. I propose that these two factors interact to affect whether individuals tend to adopt a delay

People commonly make decisions and choices that could be delayed until a later time. This investigation examines two factors that may be especially important in these types of decisions: resource stability and comparison target. I propose that these two factors interact to affect whether individuals tend to adopt a delay strategy or whether they engage in more present-oriented strategy. Specifically, this thesis study tested whether picturing one’s ideal led to the adoption of a delay strategy to a greater extent when resources were stable and to a lesser extent when resources were unstable. Participants read a house-hunting scenario in which the market was stable or unstable, and either pictured their ideal house at the beginning of the task or did not. As expected, participants in the stable housing market were more willing to delay choosing a house, though the predicted interaction between resource stability and comparison target did not emerge. Contrary to the predictions, however, participants who pictured their ideal house were more willing to choose a house immediately and were more satisfied with the house they chose. Overall, these findings did not lend support to the main argument of this investigation that picturing one’s ideal would promote a delay strategy under stable resource conditions. The finding that participants preferred immediate choice after picturing their ideal may have interesting implications for persuasion and advertising.
ContributorsAdelman, Robert Mark (Author) / Kwan, Virginia S Y (Thesis advisor) / Kenrick, Douglas T. (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2015
153152-Thumbnail Image.png
Description
Globally, addiction to stimulants such as methamphetamine (METH) remains a significant public health problem. Despite decades of research, no approved anti-relapse medications for METH or any illicit stimulant exist, and current treatment approaches suffer from high relapse rates. Recently, synthetic cathinones have also emerged as popular abused stimulants, leading to

Globally, addiction to stimulants such as methamphetamine (METH) remains a significant public health problem. Despite decades of research, no approved anti-relapse medications for METH or any illicit stimulant exist, and current treatment approaches suffer from high relapse rates. Recently, synthetic cathinones have also emerged as popular abused stimulants, leading to numerous incidences of toxicity and death. However, contrary to traditional illicit stimulants, very little is known about their addiction potential. Given the high relapse rates and lack of approved medications for METH addiction, chapters 2 and 3 of this dissertation assessed three different glutamate receptor ligands as potential anti-relapse medications following METH intravenous self-administration (IVSA) in rats. In chapters 4 through 7, using both IVSA and intracranial self-stimulation (ICSS) procedures, experiments assessed abuse liability of the popular synthetic cathinones 3,4-Methylenedioxypyrovalerone (MDPV) , methylone, α-pyrrolidinovalerophenone (α-PVP) and 4-methylethylcathinone (4-MEC). Results from these seminal studies suggest that these drugs possess similar abuse potential to traditional illicit stimulants such as METH, cocaine, and 3,4-methylenedioxymethamphetamine (MDMA). Finally, studies outlined in chapter 8 assessed the potential neurotoxic or adverse cognitive effects of METH and MDPV following IVSA procedures for the purpose of identifying potential novel pharmacotherapeutic targets. However, results of these final studies did not reveal neurotoxic or adverse cognitive effects when using similar IVSA procedural parameters that were sufficient for establishing addiction potential, suggesting that these parameters do not allow for sufficient drug intake to produce similar neurotoxicity or cognitive deficits reported in humans. Thus, these models may be inadequate for fully modeling the adverse neural and psychological consequences of stimulant addiction. Together, these studies support the notion for continued research into the abuse liability and toxicity of METH and synthetic cathinones and suggest that refinements to traditional IVSA models are needed for both more effective assessment of potential cognitive and neural deficits induced by these drugs and screening of potentially clinically efficacious pharmacotherapeutics.
ContributorsWatterson, Lucas (Author) / Olive, Michael F (Thesis advisor) / Czyzyk, Traci (Committee member) / Neisewander, Janet (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2014