Matching Items (46)
Filtering by

Clear all filters

149644-Thumbnail Image.png
Description
Intuitive decision making refers to decision making based on situational pattern recognition, which happens without deliberation. It is a fast and effortless process that occurs without complete awareness. Moreover, it is believed that implicit learning is one means by which a foundation for intuitive decision making is developed. Accordingly, the

Intuitive decision making refers to decision making based on situational pattern recognition, which happens without deliberation. It is a fast and effortless process that occurs without complete awareness. Moreover, it is believed that implicit learning is one means by which a foundation for intuitive decision making is developed. Accordingly, the present study investigated several factors that affect implicit learning and the development of intuitive decision making in a simulated real-world environment: (1) simple versus complex situational patterns; (2) the diversity of the patterns to which an individual is exposed; (3) the underlying mechanisms. The results showed that simple patterns led to higher levels of implicit learning and intuitive decision-making accuracy than complex patterns; increased diversity enhanced implicit learning and intuitive decision-making accuracy; and an embodied mechanism, labeling, contributes to the development of intuitive decision making in a simulated real-world environment. The results suggest that simulated real-world environments can provide the basis for training intuitive decision making, that diversity is influential in the process of training intuitive decision making, and that labeling contributes to the development of intuitive decision making. These results are interpreted in the context of applied situations such as military applications involving remotely piloted aircraft.
ContributorsCovas-Smith, Christine Marie (Author) / Cooke, Nancy J. (Thesis advisor) / Patterson, Robert (Committee member) / Glenberg, Arthur (Committee member) / Homa, Donald (Committee member) / Arizona State University (Publisher)
Created2011
150139-Thumbnail Image.png
Description
Although there are many forms of organization on the Web, one of the most prominent ways to organize web content and websites are tags. Tags are keywords or terms that are assigned to a specific piece of content in order to help users understand the common relationships between pieces of

Although there are many forms of organization on the Web, one of the most prominent ways to organize web content and websites are tags. Tags are keywords or terms that are assigned to a specific piece of content in order to help users understand the common relationships between pieces of content. Tags can either be assigned by an algorithm, the author, or the community. These tags can also be organized into tag clouds, which are visual representations of the structure and organization contained implicitly within these tags. Importantly, little is known on how we use these different tagging structures to understand the content and structure of a given site. This project examines 2 different characteristics of tagging structures: font size and spatial orientation. In order to examine how these different characteristics might interact with individual differences in attentional control, a measure of working memory capacity (WMC) was included. The results showed that spatial relationships affect how well users understand the structure of a website. WMC was not shown to have any significant effect; neither was varying the font size. These results should better inform how tags and tag clouds are used on the Web, and also provide an estimation of what properties to include when designing and implementing a tag cloud on a website.
ContributorsBanas, Steven (Author) / Sanchez, Christopher A (Thesis advisor) / Branaghan, Russell (Committee member) / Cooke, Nancy J. (Committee member) / Arizona State University (Publisher)
Created2011
151930-Thumbnail Image.png
Description
Incidental learning of sequential information occurs in visual, auditory and tactile domains. It occurs throughout our lifetime and even in nonhuman species. It is likely to be one of the most important foundations for the development of normal learning. To date, there is no agreement as to how incidental learning

Incidental learning of sequential information occurs in visual, auditory and tactile domains. It occurs throughout our lifetime and even in nonhuman species. It is likely to be one of the most important foundations for the development of normal learning. To date, there is no agreement as to how incidental learning occurs. The goal of the present set of experiments is to determine if visual sequential information is learned in terms of abstract rules or stimulus-specific details. Two experiments test the extent to which interaction with the stimuli can influence the information that is encoded by the learner. The results of both experiments support the claim that stimulus and domain specific details directly shape what is learned, through a process of tuning the neuromuscular systems involved in the interaction between the learner and the materials.
ContributorsMarsh, Elizabeth R (Author) / Glenberg, Arthur M. (Thesis advisor) / Amazeen, Eric (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2013
152061-Thumbnail Image.png
Description
Most people are experts in some area of information; however, they may not be knowledgeable about other closely related areas. How knowledge is generalized to hierarchically related categories was explored. Past work has found little to no generalization to categories closely related to learned categories. These results do not fit

Most people are experts in some area of information; however, they may not be knowledgeable about other closely related areas. How knowledge is generalized to hierarchically related categories was explored. Past work has found little to no generalization to categories closely related to learned categories. These results do not fit well with other work focusing on attention during and after category learning. The current work attempted to merge these two areas of by creating a category structure with the best chance to detect generalization. Participants learned order level bird categories and family level wading bird categories. Then participants completed multiple measures to test generalization to old wading bird categories, new wading bird categories, owl and raptor categories, and lizard categories. As expected, the generalization measures converged on a single overall pattern of generalization. No generalization was found, except for already learned categories. This pattern fits well with past work on generalization within a hierarchy, but do not fit well with theories of dimensional attention. Reasons why these findings do not match are discussed, as well as directions for future research.
ContributorsLancaster, Matthew E (Author) / Homa, Donald (Thesis advisor) / Glenberg, Arthur (Committee member) / Chi, Michelene (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2013
151053-Thumbnail Image.png
Description
Research on priming has shown that a stimulus can cause people to behave according to the stereotype held about the stimulus. Two experiments were conducted in which the effects of elderly priming were tested by use of a driving simulator. In both experiments, participants drove through a simulated world guided

Research on priming has shown that a stimulus can cause people to behave according to the stereotype held about the stimulus. Two experiments were conducted in which the effects of elderly priming were tested by use of a driving simulator. In both experiments, participants drove through a simulated world guided by either an elderly or a younger female voice. The voices told the participants where to make each of six turns. Both experiments yielded slower driving speeds in the elderly voice condition. The effect was universal regardless of implicit and explicit attitudes towards elderly people.
ContributorsFoster, L Bryant (Author) / Branaghan, Russell (Thesis advisor) / Becker, David (Committee member) / Cooke, Nancy J. (Committee member) / Arizona State University (Publisher)
Created2012
151060-Thumbnail Image.png
Description
By extracting communication sequences from audio data collected during two separate five-person mission-planning tasks, interaction patterns in team communication were analyzed using a recurrence-based, nonlinear dynamics approach. These methods, previously successful in detecting pattern change in a three-person team task, were evaluated for their applicability to larger team settings, and

By extracting communication sequences from audio data collected during two separate five-person mission-planning tasks, interaction patterns in team communication were analyzed using a recurrence-based, nonlinear dynamics approach. These methods, previously successful in detecting pattern change in a three-person team task, were evaluated for their applicability to larger team settings, and their ability to detect pattern change when team members switched roles or locations partway through the study (Study 1) or change in patterns over time (Study 2). Both traditional interaction variables (Talking Time, Co-Talking Time, and Sequence Length of Interactions) and dynamic interaction variables (Recurrence Rate, Determinism, and Pattern Information) were explored as indicators and predictors of changes in team structure and performance. Results from these analyses provided support that both traditional and dynamic interaction variables reflect some changes in team structure and performance. However, changes in communication patterns were not detected. Because simultaneous conversations are possible in larger teams, but not detectable through our communication sequence methods, team pattern changes may not be visible in communication sequences for larger teams. This suggests that these methods may not be applicable for larger teams, or in situations where simultaneous conversations may occur. Further research is needed to continue to explore the applicability of recurrence-based nonlinear dynamics in the analysis of team communication.
ContributorsFouse, Shannon (Author) / Cooke, Nancy J. (Thesis advisor) / Becker, David (Thesis advisor) / Gorman, Jamie (Committee member) / Arizona State University (Publisher)
Created2012
150680-Thumbnail Image.png
Description
There have been conflicting accounts of animation's facilitation in learning from instructional media, being at best no different if not hindering performance. Procedural motor learning represents one of the few the areas in which animations have shown to be facilitative. These studies examine the effects of instructional media (animation vs.

There have been conflicting accounts of animation's facilitation in learning from instructional media, being at best no different if not hindering performance. Procedural motor learning represents one of the few the areas in which animations have shown to be facilitative. These studies examine the effects of instructional media (animation vs. static), rotation (facing vs. over the shoulder) and spatial abilities (low vs. high spatial abilities) on two procedural motor tasks, knot tying and endoscope reprocessing. Results indicate that for all conditions observed in which participants engaged in procedural motor learning tasks, performance was significantly improved with animations over static images. Further, performance was greater for rotations of instructional media that did not require participants to perform a mental rotation under some circumstances. Interactions between Media x Rotation suggest that media that was animated and did not require a participant to mentally rotate led to improved performance. Individual spatial abilities were found to influence total steps correct and total number of errors made in the knot tying task, but this was not observed in the endoscope task. These findings have implications for the design of instructional media for procedural motor tasks and provide strong support for the usage of animations in this context.
ContributorsGarland, T. B (Author) / Sanchez, Chris A (Thesis advisor) / Cooke, Nancy J. (Committee member) / Branaghan, Russel (Committee member) / Arizona State University (Publisher)
Created2012
137833-Thumbnail Image.png
Description
Previous research has yielded an equivocal answer as to whether speaking aloud while performing intelligence tasks improves, impairs, or has no effect on performance. Some studies show that it impairs performance while others show it aids performance. In the studies in which speaking aloud has been shown to help, only

Previous research has yielded an equivocal answer as to whether speaking aloud while performing intelligence tasks improves, impairs, or has no effect on performance. Some studies show that it impairs performance while others show it aids performance. In the studies in which speaking aloud has been shown to help, only children and older adults benefitted. The present study investigated whether college-aged students benefit from speaking aloud while performing a fluid intelligence test. Subjects performed a battery of working memory and intelligence tasks silently. Once they had completed each task, the participants took them again, though this time they spoke aloud while completing the tests. Results showed that subjects did insignificantly worse on the working memory tests when speaking aloud. However, subjects performed significantly better on the measures of fluid intelligence while speaking aloud as opposed to doing them silently. At an individual differences level, low working memory capacity participants benefited more from speaking aloud than the high working memory ones. Finally, we found a positive correlation between working memory scores and fluid intelligence scores, offering further evidence that the two constructs are related, yet different.
ContributorsRice, Z. Douglas (Author) / Brewer, Gene (Thesis director) / Duch, Carsten (Committee member) / Ball, Hunter (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
136843-Thumbnail Image.png
Description
An introduction to neuroscientific thought aimed at an audience that is not educated in biology. Meant to be readable and easily understood by anyone with a high school education. The first section is completed in its entirety, with outlines for the proposed final sections to be completed over the next

An introduction to neuroscientific thought aimed at an audience that is not educated in biology. Meant to be readable and easily understood by anyone with a high school education. The first section is completed in its entirety, with outlines for the proposed final sections to be completed over the next few years.
ContributorsNelson, Nicholas Alan (Author) / Olive, M. Foster (Thesis director) / Brewer, Gene (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor)
Created2014-05
149601-Thumbnail Image.png
Description
It has been suggested that directed forgetting (DF) in the item-method paradigm results from selective rehearsal of R items and passive decay of F items. However, recent evidence suggested that the passive decay explanation is insufficient. The current experiments examined two theories of DF that assume an active forgetting process:

It has been suggested that directed forgetting (DF) in the item-method paradigm results from selective rehearsal of R items and passive decay of F items. However, recent evidence suggested that the passive decay explanation is insufficient. The current experiments examined two theories of DF that assume an active forgetting process: (1) attentional inhibition and (2) tagging and selective search (TSS). Across three experiments, the central tenets of these theories were evaluated. Experiment 1 included encoding manipulations in an attempt to distinguish between these competing theories, but the results were inconclusive. Experiments 2 and 3 examined the theories separately. The results from Experiment 2 supported a representation suppression account of attentional inhibition, while the evidence from Experiment 3 suggested that TSS was not a viable mechanism for DF. Overall, the results provide additional evidence that forgetting is due to an active process, and suggest this process may act to suppress the representations of F items.
ContributorsHansen, Whitney Anne (Author) / Goldinger, Stephen D. (Thesis advisor) / Azuma, Tamiko (Committee member) / Brewer, Gene (Committee member) / Homa, Donald (Committee member) / Arizona State University (Publisher)
Created2011