Matching Items (58)
Filtering by

Clear all filters

150104-Thumbnail Image.png
Description
A full understanding of material behavior is important for the prediction of residual useful life of aerospace structures via computational modeling. In particular, the influence of rolling-induced anisotropy on fatigue properties has not been studied extensively and it is likely to have a meaningful effect. In this work, fatigue behavior

A full understanding of material behavior is important for the prediction of residual useful life of aerospace structures via computational modeling. In particular, the influence of rolling-induced anisotropy on fatigue properties has not been studied extensively and it is likely to have a meaningful effect. In this work, fatigue behavior of a wrought Al alloy (2024-T351) is studied using notched uniaxial samples with load axes along either the longitudinal or transverse direction, and center notched biaxial samples (cruciforms) with a uniaxial stress state of equivalent amplitude about the bore. Local composition and crystallography were quantified before testing using Energy Dispersive Spectroscopy and Electron Backscattering Diffraction. Interrupted fatigue testing at stresses close to yielding was performed on the samples to nucleate and propagate short cracks and nucleation sites were located and characterized using standard optical and Scanning Electron Microscopy. Results show that crack nucleation occurred due to fractured particles for longitudinal dogbone/cruciform samples; while transverse samples nucleated cracks by debonded and fractured particles. Change in crack nucleation mechanism is attributed to dimensional change of particles with respect to the material axes caused by global anisotropy. Crack nucleation from debonding reduced life till matrix fracture because debonded particles are sharper and generate matrix cracks sooner than their fractured counterparts. Longitudinal samples experienced multisite crack initiation because of reduced cross sectional areas of particles parallel to the loading direction. Conversely the favorable orientation of particles in transverse samples reduced instances of particle fracture eliminating multisite cracking and leading to increased fatigue life. Cyclic tests of cruciform samples showed that crack growth favors longitudinal and transverse directions with few instances of crack growth 45 degrees (diagonal) to the rolling direction. The diagonal crack growth is attributed to stronger influences of local anisotropy on crack nucleation. It was observed that majority of the time crack nucleation is governed by the mixed influences of global and local anisotropies. Measurements of crystal directions parallel to the load on main crack paths revealed directions clustered near the {110} planes and high index directions. This trend is attributed to environmental effects as a result of cyclic testing in air.
ContributorsMakaš, Admir (Author) / Peralta, Pedro D. (Thesis advisor) / Davidson, Joseph K. (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2011
151425-Thumbnail Image.png
Description
HgCdTe is currently the dominant material for infrared sensing and imaging, and is usually grown on lattice-matched bulk CdZnTe (CZT) substrates. There have been significant recent efforts to identify alternative substrates to CZT as well as alternative detector materials to HgCdTe. In this dissertation research, a wide range of transmission

HgCdTe is currently the dominant material for infrared sensing and imaging, and is usually grown on lattice-matched bulk CdZnTe (CZT) substrates. There have been significant recent efforts to identify alternative substrates to CZT as well as alternative detector materials to HgCdTe. In this dissertation research, a wide range of transmission electron microscopy (TEM) imaging and analytical techniques was used in the characterization of epitaxial HgCdTe and related materials and substrates for third generation IR detectors. ZnTe layers grown on Si substrates are considered to be promising candidates for lattice-matched, large-area, and low-cost composite substrates for deposition of II-VI and III-V compound semiconductors with lattice constants near 6.1 Å. After optimizing MBE growth conditions including substrate pretreatment prior to film growth, as well as nucleation and growth temperatures, thick ZnTe/Si films with high crystallinity, low defect density, and excellent surface morphology were achieved. Changes in the Zn/Te flux ratio used during growth were also investigated. Small-probe microanalysis confirmed that a small amount of As was present at the ZnTe/Si interface. A microstructural study of HgCdTe/CdTe/GaAs (211)B and CdTe/GaAs (211)B heterostructures grown using MBE was carried out. High quality MBE-grown CdTe on GaAs(211)B substrates was demonstrated to be a viable composite substrate platform for HgCdTe growth. In addition, analysis of interfacial misfit dislocations and residual strain showed that the CdTe/GaAs interface was fully relaxed. In the case of HgCdTe/CdTe/ GaAs(211)B, thin HgTe buffer layers between HgCdTe and CdTe were also investigated for improving the HgCdTe crystal quality. A set of ZnTe layers epitaxially grown on GaSb(211)B substrates using MBE was studied using high resolution X-ray diffraction (HRXRD) measurements and TEM characterization in order to investigate conditions for defect-free growth. HRXRD results gave critical thickness estimates between 350 nm and 375 nm, in good agreement with theoretical predictions. Moreover, TEM results confirmed that ZnTe layers with thicknesses of 350 nm had highly coherent interfaces and very low dislocation densities, unlike samples with the thicker ZnTe layers.
ContributorsKim, Jae Jin (Author) / Smith, David J. (Thesis advisor) / McCartney, Martha R. (Committee member) / Alford, Terry L. (Committee member) / Crozier, Peter A. (Committee member) / Arizona State University (Publisher)
Created2012
151301-Thumbnail Image.png
Description
Zinc oxide (ZnO) has attracted much interest during last decades as a functional material. Furthermore, ZnO is a potential material for transparent conducting oxide material competing with indium tin oxide (ITO), graphene, and carbon nanotube film. It has been known as a conductive material when doped with elements such as

Zinc oxide (ZnO) has attracted much interest during last decades as a functional material. Furthermore, ZnO is a potential material for transparent conducting oxide material competing with indium tin oxide (ITO), graphene, and carbon nanotube film. It has been known as a conductive material when doped with elements such as indium, gallium and aluminum. The solubility of those dopant elements in ZnO is still debatable; but, it is necessary to find alternative conducting materials when their form is film or nanostructure for display devices. This is a consequence of the ever increasing price of indium. In addition, a new generation solar cell (nanostructured or hybrid photovoltaics) requires compatible materials which are capable of free standing on substrates without seed or buffer layers and have the ability introduce electrons or holes pathway without blocking towards electrodes. The nanostructures for solar cells using inorganic materials such as silicon (Si), titanium oxide (TiO2), and ZnO have been an interesting topic for research in solar cell community in order to overcome the limitation of efficiency for organic solar cells. This dissertation is a study of the rational solution-based synthesis of 1-dimentional ZnO nanomaterial and its solar cell applications. These results have implications in cost effective and uniform nanomanufacturing for the next generation solar cells application by controlling growth condition and by doping transition metal element in solution.
ContributorsChoi, Hyung Woo (Author) / Alford, Terry L. (Thesis advisor) / Krause, Stephen (Committee member) / Theodore, N. David (Committee member) / Arizona State University (Publisher)
Created2012
151280-Thumbnail Image.png
Description
The work presented in this thesis covers the synthesis and characterization of an ionomer that is applicable to zinc-air batteries. Polysulfone polymer is first chloromethylated and then quaternized to create an ion-conducting polymer. Nuclear magnetic resonance (NMR) spectra indicates that the degree of chloromethylation was 114%. The chemical and physical

The work presented in this thesis covers the synthesis and characterization of an ionomer that is applicable to zinc-air batteries. Polysulfone polymer is first chloromethylated and then quaternized to create an ion-conducting polymer. Nuclear magnetic resonance (NMR) spectra indicates that the degree of chloromethylation was 114%. The chemical and physical properties that were investigated include: the ionic conductivity, ion exchange capacity, water retention capacity, diameter and thickness swelling ratios, porosity, glass transition temperature, ionic conductivity enhanced by free salt addition, and the concentration and diffusivity of oxygen within the ionomer. It was found that the fully hydrated hydroxide form of the ionomer had a room temperature ionic conductivity of 39.92mS/cm while the chloride form had a room temperature ionic conductivity of 11.80mS/cm. The ion exchange capacity of the ionomer was found to be 1.022mmol/g. The water retention capacity (WRC) of the hydroxide form was found to be 172.6% while the chloride form had a WRC of 67.9%. The hydroxide form of the ionomer had a diameter swelling ratio of 34% and a thickness swelling ratio of 55%. The chloride form had a diameter swelling ratio of 32% and a thickness swelling ratio of 28%. The largest pore size in the ionomer was found to be 32.6nm in diameter. The glass transition temperature of the ionomer is speculated to be 344°C. A definite measurement could not be made. The room temperature ionic conductivity at 50% relative humidity was improved to 12.90mS/cm with the addition of 80% free salt. The concentration and diffusivity of oxygen in the ionomer was found to be 1.3 ±0.2mMol and (0.49 ±0.15)x10-5 cm2/s respectively. The ionomer synthesized in this research had material properties and performance that is comparable to other ionomers reported in the literature. This is an indication that this ionomer is suitable for further study and integration into a zinc-air battery. This thesis is concluded with suggestions for future research that is focused on improving the performance of the ionomer as well as improving the methodology.
ContributorsPadilla, Manuel (Author) / Friesen, Cody A (Thesis advisor) / Buttry, Daniel (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2012
151351-Thumbnail Image.png
Description
Dealloying induced stress corrosion cracking is particularly relevant in energy conversion systems (both nuclear and fossil fuel) as many failures in alloys such as austenitic stainless steel and nickel-based systems result directly from dealloying. This study provides evidence of the role of unstable dynamic fracture processes in dealloying induced stress-corrosion

Dealloying induced stress corrosion cracking is particularly relevant in energy conversion systems (both nuclear and fossil fuel) as many failures in alloys such as austenitic stainless steel and nickel-based systems result directly from dealloying. This study provides evidence of the role of unstable dynamic fracture processes in dealloying induced stress-corrosion cracking of face-centered cubic alloys. Corrosion of such alloys often results in the formation of a brittle nanoporous layer which we hypothesize serves to nucleate a crack that owing to dynamic effects penetrates into the un-dealloyed parent phase alloy. Thus, since there is essentially a purely mechanical component of cracking, stress corrosion crack propagation rates can be significantly larger than that predicted from electrochemical parameters. The main objective of this work is to examine and test this hypothesis under conditions relevant to stress corrosion cracking. Silver-gold alloys serve as a model system for this study since hydrogen effects can be neglected on a thermodynamic basis, which allows us to focus on a single cracking mechanism. In order to study various aspects of this problem, the dynamic fracture properties of monolithic nanoporous gold (NPG) were examined in air and under electrochemical conditions relevant to stress corrosion cracking. The detailed processes associated with the crack injection phenomenon were also examined by forming dealloyed nanoporous layers of prescribed properties on un-dealloyed parent phase structures and measuring crack penetration distances. Dynamic fracture in monolithic NPG and in crack injection experiments was examined using high-speed (106 frames s-1) digital photography. The tunable set of experimental parameters included the NPG length scale (20-40 nm), thickness of the dealloyed layer (10-3000 nm) and the electrochemical potential (0.5-1.5 V). The results of crack injection experiments were characterized using the dual-beam focused ion beam/scanning electron microscopy. Together these tools allow us to very accurately examine the detailed structure and composition of dealloyed grain boundaries and compare crack injection distances to the depth of dealloying. The results of this work should provide a basis for new mathematical modeling of dealloying induced stress corrosion cracking while providing a sound physical basis for the design of new alloys that may not be susceptible to this form of cracking. Additionally, the obtained results should be of broad interest to researchers interested in the fracture properties of nano-structured materials. The findings will open up new avenues of research apart from any implications the study may have for stress corrosion cracking.
ContributorsSun, Shaofeng (Author) / Sieradzki, Karl (Thesis advisor) / Jiang, Hanqing (Committee member) / Peralta, Pedro (Committee member) / Arizona State University (Publisher)
Created2012
151514-Thumbnail Image.png
Description
Dealloying, the selective dissolution of an elemental component from an alloy, is an important corrosion mechanism and a technological significant means to fabricate nanoporous structures for a variety of applications. In noble metal alloys, dealloying proceeds above a composition dependent critical potential, and bi-continuous structure evolves "simultaneously" as a result

Dealloying, the selective dissolution of an elemental component from an alloy, is an important corrosion mechanism and a technological significant means to fabricate nanoporous structures for a variety of applications. In noble metal alloys, dealloying proceeds above a composition dependent critical potential, and bi-continuous structure evolves "simultaneously" as a result of the interplay between percolation dissolution and surface diffusion. In contrast, dealloying in alloys that show considerable solid-state mass transport at ambient temperature is largely unexplored despite its relevance to nanoparticle catalysts and Li-ion anodes. In my dissertation, I discuss the behaviors of two alloy systems in order to elucidate the role of bulk lattice diffusion in dealloying. First, Mg-Cd alloys are chosen to show that when the dealloying is controlled by bulk diffusion, a new type of porosity - negative void dendrites will form, and the process mirrors electrodeposition. Then, Li-Sn alloys are studied with respect to the composition, particle size and dealloying rate effects on the morphology evolution. Under the right condition, dealloying of Li-Sn supported by percolation dissolution results in the same bi-continuous structure as nanoporous noble metals; whereas lattice diffusion through the otherwise "passivated" surface allows for dealloying with no porosity evolution. The interactions between bulk diffusion, surface diffusion and dissolution are revealed by chronopotentiometry and linear sweep voltammetry technics. The better understanding of dealloying from these experiments enables me to construct a brief review summarizing the electrochemistry and morphology aspects of dealloying as well as offering interpretations to new observations such as critical size effect and encased voids in nanoporous gold. At the end of the dissertation, I will describe a preliminary attempt to generalize the morphology evolution "rules of dealloying" to all solid-to-solid interfacial controlled phase transition process, demonstrating that bi-continuous morphologies can evolve regardless of the nature of parent phase.
ContributorsChen, Qing (Author) / Sieradzki, Karl (Thesis advisor) / Friesen, Cody (Committee member) / Buttry, Daniel (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2013
152052-Thumbnail Image.png
Description
Microwave (MW), thermal, and ultraviolet (UV) annealing were used to explore the response of Ag structures on a Ge-Se chalcogenide glass (ChG) thin film as flexible radiation sensors, and Te-Ti chalcogenide thin films as a material for diffusion barriers in microelectronics devices and processing of metallized Cu. Flexible resistive radiation

Microwave (MW), thermal, and ultraviolet (UV) annealing were used to explore the response of Ag structures on a Ge-Se chalcogenide glass (ChG) thin film as flexible radiation sensors, and Te-Ti chalcogenide thin films as a material for diffusion barriers in microelectronics devices and processing of metallized Cu. Flexible resistive radiation sensors consisting of Ag electrodes on a Ge20Se80 ChG thin film and polyethylene naphthalate substrate were exposed to UV radiation. The sensors were mounted on PVC tubes of varying radii to induce bending strains and annealed under ambient conditions up to 150 oC. Initial sensor resistance was measured to be ~1012 Ω; after exposure to UV radiation, the resistance was ~104 Ω. Bending strain and low temperature annealing had no significant effect on the resistance of the sensors. Samples of Cu on Te-Ti thin films were annealed in vacuum for up to 30 minutes and were stable up to 500 oC as revealed using Rutherford backscattering spectrometry (RBS) and four-point-probe analysis. X-ray diffractometry (XRD) indicates Cu grain growth up to 500 oC and phase instability of the Te-Ti barrier at 600 oC. MW processing was performed in a 2.45-GHz microwave cavity on Cu/Te-Ti films for up to 30 seconds to induce oxide growth. Using a calibrated pyrometer above the sample, the temperature of the MW process was measured to be below a maximum of 186 oC. Four-point-probe analysis shows an increase in resistance with an increase in MW time. XRD indicates growth of CuO on the sample surface. RBS suggests oxidation throughout the Te-Ti film. Additional samples were exposed to 907 J/cm2 UV radiation in order to ensure other possible electromagnetically induced mechanisms were not active. There were no changes observed using XRD, RBS or four point probing.
ContributorsRoos, Benjamin, 1990- (Author) / Alford, Terry L. (Thesis advisor) / Theodore, David (Committee member) / Kozicki, Michael (Committee member) / Arizona State University (Publisher)
Created2013
150926-Thumbnail Image.png
Description
This thesis discusses the evolution of conduction mechanism in the silver (Ag) on zinc oxide (ZnO) thin film system with respect to the Ag morphology. As a plausible substitute for indium tin oxide (ITO), TCO/Metal/TCO (TMT) structure has received a lot of attentions as a prospective ITO substitute due to

This thesis discusses the evolution of conduction mechanism in the silver (Ag) on zinc oxide (ZnO) thin film system with respect to the Ag morphology. As a plausible substitute for indium tin oxide (ITO), TCO/Metal/TCO (TMT) structure has received a lot of attentions as a prospective ITO substitute due to its low resistivity and desirable transmittance. However, the detailed conduction mechanism is not fully understood. In an attempt to investigate the conduction mechanism of the ZnO/Ag/ZnO thin film system with respect to the Ag microstructure, the top ZnO layer is removed, which offers a better view of Ag morphology by using scanning electron microscopy (SEM). With 2 nm thick Ag layer, it is seen that the Ag forms discrete islands with small islands size (r), but large separation (s); also the effective resistivity of the system is extremely high. This regime is designated as dielectric zone. In this regime, thermionic emission and activated tunneling conduction mechanisms are considered. Based on simulations, when "s" was beyond 6 nm, thermionic emission dominates; with "s" less than 6 nm, activated tunneling is the dominating mechanism. As the Ag thickness increases, the individual islands coalesce and Ag clusters are formed. At certain Ag thickness, there are one or several Ag clusters that percolate the ZnO film, and the effective resistivity of the system exhibits a tremendous drop simultaneously, because the conducting electrons do not need to overcome huge ZnO barrier to transport. This is recognized as percolation zone. As the Ag thickness grows, Ag film becomes more continuous and there are no individual islands left on the surface. The effective resistivity decreases and is comparable to the characteristics of metallic materials, so this regime is categorized as metallic zone. The simulation of the Ag thin film resistivity is performed in terms of Ag thickness, and the experimental data fits the simulation well, which supports the proposed models. Hall measurement and four point probe measurement are carried out to characterize the electrical properties of the thin film system.
ContributorsZhang, Shengke (Author) / Alford, Terry L. (Thesis advisor) / Schroder, Dieter K. (Committee member) / Tasooji, Amaneh (Committee member) / Arizona State University (Publisher)
Created2012
150645-Thumbnail Image.png
Description
This work focuses on simulation of electrical resistivity and optical behaviors of thin films, where an Ag or Au thin layer is embedded in zinc oxide. Enhanced conductivity and transparency were earlier achieved with multilayer structured transparent conducting oxide (TCO) sandwich layer with metal (TCO/metal/TCO). Sputtering pattern of metal layer

This work focuses on simulation of electrical resistivity and optical behaviors of thin films, where an Ag or Au thin layer is embedded in zinc oxide. Enhanced conductivity and transparency were earlier achieved with multilayer structured transparent conducting oxide (TCO) sandwich layer with metal (TCO/metal/TCO). Sputtering pattern of metal layer is simulated to obtain the morphology, covered area fraction, and the percolation strength. The resistivity as a function of the metal layer thickness fits the modeled trend of covered area fraction beyond the percolation threshold. This result not only presents the robustness of the simulation, but also demonstrates the influence of metal morphology in multilayer structure. Effective medium coefficients are defined from the coverage and percolation strength to obtain simulated optical transmittance which matches experimental observation. The coherence of resistivity and optical transmittance validates the simulation of the sputtered pattern and the incorporation of percolation theory in the model.
ContributorsFang, Chia-Ling (Author) / Alford, Terry L. (Thesis advisor) / Crozier, Peter (Committee member) / Theodore, David (Committee member) / Arizona State University (Publisher)
Created2012
150482-Thumbnail Image.png
Description
This research focuses on the stress and structure evolution observed in-situ during the earliest stages of thin film growth in Cu on Au(111)-reconstruction. For the research, an ultra high vacuum-scanning tunneling microscopy (UHV-STM) system was modified to have the additional capabilities of in-situ deposition and in-situ stress evolution monitoring. The

This research focuses on the stress and structure evolution observed in-situ during the earliest stages of thin film growth in Cu on Au(111)-reconstruction. For the research, an ultra high vacuum-scanning tunneling microscopy (UHV-STM) system was modified to have the additional capabilities of in-situ deposition and in-situ stress evolution monitoring. The design and fabrication processes for the modifications are explained in detail. The deposition source enabled imaging during the deposition of Cu thin films, while also being columnar enough to avoid negatively impacting the function of the microscope. It was found that the stress-induced changes in piezo voltage occurred over a substantially longer time scale and larger piezo scale than used during imaging, allowing for the deconvolution of the two sources of piezo voltage change. The intrinsic stress evolution observed at the onset of Cu growth was tensile in character and reached a maximum of 0.19 N/m at approximately 0.8ML, with an average tensile slope of 1.0GPa. As the film thickness increased beyond 0.8 ML, the stress became less tensile as the observation of disordered stripe and trigon patterns of misfit dislocations began to appear. The transport of atoms from the surface of enlarged Cu islands into the strained layer played an important role in this stage, because they effectively reduce the activation barrier for the formation of the observed surface structures. A rich array of structures were observed in the work presented here including stripe, disordered stripe and trigon patterns co-existing in a single Cu layer. Heteroepitaxial systems in existing literature showed a uniform structure in the single layer. The non-uniform structures in the single layer of this work may be attributed to the room temperature Cu growth, which can kinetically limit uniform pattern formation. The development of the UHV-STM system with additional capabilities for this work is expected to contribute to research for the stress and structure relationships of many other heteroepitaxial systems.
ContributorsNah, Jungwoo (Author) / Friesen, Cody (Thesis advisor) / Sieradzki, Karl (Committee member) / Bennett, Peter (Committee member) / Arizona State University (Publisher)
Created2012