Matching Items (1,809)
Filtering by

Clear all filters

151754-Thumbnail Image.png
Description
It is commonly known that High Performance Computing (HPC) systems are most frequently used by multiple users for batch job, parallel computations. Less well known, however, are the numerous HPC systems servicing data so sensitive that administrators enforce either a) sequential job processing - only one job at a time

It is commonly known that High Performance Computing (HPC) systems are most frequently used by multiple users for batch job, parallel computations. Less well known, however, are the numerous HPC systems servicing data so sensitive that administrators enforce either a) sequential job processing - only one job at a time on the entire system, or b) physical separation - devoting an entire HPC system to a single project until recommissioned. The driving forces behind this type of security are numerous but share the common origin of data so sensitive that measures above and beyond industry standard are used to ensure information security. This paper presents a network security solution that provides information security above and beyond industry standard, yet still enabling multi-user computations on the system. This paper's main contribution is a mechanism designed to enforce high level time division multiplexing of network access (Time Division Multiple Access, or TDMA) according to security groups. By dividing network access into time windows, interactions between applications over the network can be prevented in an easily verifiable way.
ContributorsFerguson, Joshua (Author) / Gupta, Sandeep Ks (Thesis advisor) / Varsamopoulos, Georgios (Committee member) / Ball, George (Committee member) / Arizona State University (Publisher)
Created2013
151926-Thumbnail Image.png
Description
In recent years, machine learning and data mining technologies have received growing attention in several areas such as recommendation systems, natural language processing, speech and handwriting recognition, image processing and biomedical domain. Many of these applications which deal with physiological and biomedical data require person specific or person adaptive systems.

In recent years, machine learning and data mining technologies have received growing attention in several areas such as recommendation systems, natural language processing, speech and handwriting recognition, image processing and biomedical domain. Many of these applications which deal with physiological and biomedical data require person specific or person adaptive systems. The greatest challenge in developing such systems is the subject-dependent data variations or subject-based variability in physiological and biomedical data, which leads to difference in data distributions making the task of modeling these data, using traditional machine learning algorithms, complex and challenging. As a result, despite the wide application of machine learning, efficient deployment of its principles to model real-world data is still a challenge. This dissertation addresses the problem of subject based variability in physiological and biomedical data and proposes person adaptive prediction models based on novel transfer and active learning algorithms, an emerging field in machine learning. One of the significant contributions of this dissertation is a person adaptive method, for early detection of muscle fatigue using Surface Electromyogram signals, based on a new multi-source transfer learning algorithm. This dissertation also proposes a subject-independent algorithm for grading the progression of muscle fatigue from 0 to 1 level in a test subject, during isometric or dynamic contractions, at real-time. Besides subject based variability, biomedical image data also varies due to variations in their imaging techniques, leading to distribution differences between the image databases. Hence a classifier learned on one database may perform poorly on the other database. Another significant contribution of this dissertation has been the design and development of an efficient biomedical image data annotation framework, based on a novel combination of transfer learning and a new batch-mode active learning method, capable of addressing the distribution differences across databases. The methodologies developed in this dissertation are relevant and applicable to a large set of computing problems where there is a high variation of data between subjects or sources, such as face detection, pose detection and speech recognition. From a broader perspective, these frameworks can be viewed as a first step towards design of automated adaptive systems for real world data.
ContributorsChattopadhyay, Rita (Author) / Panchanathan, Sethuraman (Thesis advisor) / Ye, Jieping (Thesis advisor) / Li, Baoxin (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2013
151930-Thumbnail Image.png
Description
Incidental learning of sequential information occurs in visual, auditory and tactile domains. It occurs throughout our lifetime and even in nonhuman species. It is likely to be one of the most important foundations for the development of normal learning. To date, there is no agreement as to how incidental learning

Incidental learning of sequential information occurs in visual, auditory and tactile domains. It occurs throughout our lifetime and even in nonhuman species. It is likely to be one of the most important foundations for the development of normal learning. To date, there is no agreement as to how incidental learning occurs. The goal of the present set of experiments is to determine if visual sequential information is learned in terms of abstract rules or stimulus-specific details. Two experiments test the extent to which interaction with the stimuli can influence the information that is encoded by the learner. The results of both experiments support the claim that stimulus and domain specific details directly shape what is learned, through a process of tuning the neuromuscular systems involved in the interaction between the learner and the materials.
ContributorsMarsh, Elizabeth R (Author) / Glenberg, Arthur M. (Thesis advisor) / Amazeen, Eric (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2013
151931-Thumbnail Image.png
Description
Bully victimization has been associated with blunted cardiovascular responses to stress as well as elevated responses to stress. The difference between these altered physiological responses to stress is largely unknown. This study explored several possible moderators to the relationship between chronic stress and future cardiac output (an indicator of increased

Bully victimization has been associated with blunted cardiovascular responses to stress as well as elevated responses to stress. The difference between these altered physiological responses to stress is largely unknown. This study explored several possible moderators to the relationship between chronic stress and future cardiac output (an indicator of increased stress) in response to future stressors. These moderators include the difference between social and physical stressors and individual levels of loneliness. Participants were administered measures of loneliness and victimization history, and led to anticipate either a "social" (recorded speech) or "non-social" (pain tolerance test ) stressor, neither of which occurred. EKG and impedance cardiography were measured throughout the session. When anticipating both stressors, loneliness and victimization were associated with increased CO. A regression revealed a three-way interaction, with change in cardiac output depending on victimization history, loneliness, and condition in the physical stressor condition. Loneliness magnified the CO output levels of non-bullied individuals when facing a physical stressor. These results suggest that non- bullied participants high in loneliness are more stressed out when facing stressors, particularly stressors that are physically threatening in nature.
ContributorsHaneline, Magen (Author) / Newman, Matt (Thesis advisor) / Salerno, Jessica (Committee member) / Miller, Paul (Committee member) / Arizona State University (Publisher)
Created2013
151940-Thumbnail Image.png
Description
Biological systems are complex in many dimensions as endless transportation and communication networks all function simultaneously. Our ability to intervene within both healthy and diseased systems is tied directly to our ability to understand and model core functionality. The progress in increasingly accurate and thorough high-throughput measurement technologies has provided

Biological systems are complex in many dimensions as endless transportation and communication networks all function simultaneously. Our ability to intervene within both healthy and diseased systems is tied directly to our ability to understand and model core functionality. The progress in increasingly accurate and thorough high-throughput measurement technologies has provided a deluge of data from which we may attempt to infer a representation of the true genetic regulatory system. A gene regulatory network model, if accurate enough, may allow us to perform hypothesis testing in the form of computational experiments. Of great importance to modeling accuracy is the acknowledgment of biological contexts within the models -- i.e. recognizing the heterogeneous nature of the true biological system and the data it generates. This marriage of engineering, mathematics and computer science with systems biology creates a cycle of progress between computer simulation and lab experimentation, rapidly translating interventions and treatments for patients from the bench to the bedside. This dissertation will first discuss the landscape for modeling the biological system, explore the identification of targets for intervention in Boolean network models of biological interactions, and explore context specificity both in new graphical depictions of models embodying context-specific genomic regulation and in novel analysis approaches designed to reveal embedded contextual information. Overall, the dissertation will explore a spectrum of biological modeling with a goal towards therapeutic intervention, with both formal and informal notions of biological context, in such a way that will enable future work to have an even greater impact in terms of direct patient benefit on an individualized level.
ContributorsVerdicchio, Michael (Author) / Kim, Seungchan (Thesis advisor) / Baral, Chitta (Committee member) / Stolovitzky, Gustavo (Committee member) / Collofello, James (Committee member) / Arizona State University (Publisher)
Created2013
151943-Thumbnail Image.png
Description
School bullying is a serious problem for children and adolescents, associated with a multitude of psychological and behavioral problems. Interventions at the individual level have primarily been social skills training for victims of bullying. However, investigators have had mixed results; finding little change in victimization rates. It has been suggested

School bullying is a serious problem for children and adolescents, associated with a multitude of psychological and behavioral problems. Interventions at the individual level have primarily been social skills training for victims of bullying. However, investigators have had mixed results; finding little change in victimization rates. It has been suggested victims of school bullying have the social skills necessary to be effective in a bullying situation; however they experience intense emotional arousal and negative thoughts leading to an inability to use social skills. One intervention that has been getting increasing acknowledgement for its utility in the intervention literature in psychology is mindfulness. However, there has been no research conducted examining the effects of mindfulness meditation on victims of bullying. Therefore, the purpose of this study was to develop an online intervention for victims of bullying that utilizes the cutting-edge technique of mindfulness and to determine the efficacy of this intervention in the context of bullying victimization. Participants were 32 adolescents ages 11 to 14 identified by their school facilitators as victims of bullying. Repeated measures ANOVAs were used to assess the efficacy of the NMT program versus a treatment as usual (TAU) social skills program. Results revealed significant decreases in victimization and increases in mindfulness among both treatment groups from pre-test to follow-up and post-test to follow-up assessments. There were no differences found between the two treatment groups for mean victimization or mindfulness scores. Overall, the NMT program appears to be a promising online intervention for bullied teens. Directions for future research and limitations of this study were also discussed.
ContributorsYabko, Brandon (Author) / Tracey, Terence J. G. (Thesis advisor) / Homer, Judith (Committee member) / Sebren, Ann (Committee member) / Arizona State University (Publisher)
Created2013
151945-Thumbnail Image.png
Description
In recent years we have witnessed a shift towards multi-processor system-on-chips (MPSoCs) to address the demands of embedded devices (such as cell phones, GPS devices, luxury car features, etc.). Highly optimized MPSoCs are well-suited to tackle the complex application demands desired by the end user customer. These MPSoCs incorporate a

In recent years we have witnessed a shift towards multi-processor system-on-chips (MPSoCs) to address the demands of embedded devices (such as cell phones, GPS devices, luxury car features, etc.). Highly optimized MPSoCs are well-suited to tackle the complex application demands desired by the end user customer. These MPSoCs incorporate a constellation of heterogeneous processing elements (PEs) (general purpose PEs and application-specific integrated circuits (ASICS)). A typical MPSoC will be composed of a application processor, such as an ARM Coretex-A9 with cache coherent memory hierarchy, and several application sub-systems. Each of these sub-systems are composed of highly optimized instruction processors, graphics/DSP processors, and custom hardware accelerators. Typically, these sub-systems utilize scratchpad memories (SPM) rather than support cache coherency. The overall architecture is an integration of the various sub-systems through a high bandwidth system-level interconnect (such as a Network-on-Chip (NoC)). The shift to MPSoCs has been fueled by three major factors: demand for high performance, the use of component libraries, and short design turn around time. As customers continue to desire more and more complex applications on their embedded devices the performance demand for these devices continues to increase. Designers have turned to using MPSoCs to address this demand. By using pre-made IP libraries designers can quickly piece together a MPSoC that will meet the application demands of the end user with minimal time spent designing new hardware. Additionally, the use of MPSoCs allows designers to generate new devices very quickly and thus reducing the time to market. In this work, a complete MPSoC synthesis design flow is presented. We first present a technique \cite{leary1_intro} to address the synthesis of the interconnect architecture (particularly Network-on-Chip (NoC)). We then address the synthesis of the memory architecture of a MPSoC sub-system \cite{leary2_intro}. Lastly, we present a co-synthesis technique to generate the functional and memory architectures simultaneously. The validity and quality of each synthesis technique is demonstrated through extensive experimentation.
ContributorsLeary, Glenn (Author) / Chatha, Karamvir S (Thesis advisor) / Vrudhula, Sarma (Committee member) / Shrivastava, Aviral (Committee member) / Beraha, Rudy (Committee member) / Arizona State University (Publisher)
Created2013
151956-Thumbnail Image.png
Description
The development of self-regulation is believed to play a crucial role in predicting later psychopathology and is believed to begin in early childhood. The early postpartum period is particularly important in laying the groundwork for later self-regulation as infants' dispositional traits interact with caregivers' co-regulatory behaviors to produce the earliest

The development of self-regulation is believed to play a crucial role in predicting later psychopathology and is believed to begin in early childhood. The early postpartum period is particularly important in laying the groundwork for later self-regulation as infants' dispositional traits interact with caregivers' co-regulatory behaviors to produce the earliest forms of self-regulation. Moreover, although emerging literature suggests that infants' exposure to maternal stress even before birth may be integral in determining children's self-regulatory capacities, the complex pathways that characterize these developmental processes remain unclear. The current study considers the complex, transactional processes in a high-risk, Mexican American sample. Data were collected from 305 Mexican American infants and their mothers during prenatal, 6- and 12-week home interviews. Mother self-reports of stress were obtained prenatally between 34-37 weeks gestation. Mother reports of infant temperamental negativity and surgency were obtained at 6-weeks as were observed global ratings of maternal sensitivity during a structured peek-a-boo task. Microcoded ratings of infants' engagement orienting and self-comforting behaviors were obtained during the 12-week peek-a-boo task. Study findings suggest that self-comforting and orienting behaviors help to modulate infants' experiences of distress, and also that prenatal stress influences infants' engagement in each of those regulatory behaviors, both directly by influence tendencies to engage in orienting behaviors and indirectly by programming higher levels of infant negativity and surgency, both of which may confer risk for later regulatory disadvantage. Advancing our understandings about the nature of these developmental pathways could have significant implications for targets of early intervention in this high-risk population.
ContributorsLin, Betty (Author) / Crnic, Keith A (Thesis advisor) / Lemery-Chalfant, Kathryn S (Committee member) / Mackinnon, David P (Committee member) / Arizona State University (Publisher)
Created2013
151962-Thumbnail Image.png
Description
This study explored the motivation and persistence factors for non-professional athletes who decided after the age of 40 to begin training for an IRONMAN distance triathlon. The qualitative methodology of grounded theory (Strauss & Corbin, 1998) was used in conceptualizing and implementing the research. In-depth interviews were conducted with 10

This study explored the motivation and persistence factors for non-professional athletes who decided after the age of 40 to begin training for an IRONMAN distance triathlon. The qualitative methodology of grounded theory (Strauss & Corbin, 1998) was used in conceptualizing and implementing the research. In-depth interviews were conducted with 10 individuals in the Southwest region of the United States. Data was coded in accordance with grounded theory methods. Motivation themes that emerged from the data centered around either initiating training for triathlon as an approach toward a specific goal or outcome, or beginning triathlon as a way to cope with personal difficulties. Obstacles to motivation also emerged, such as finances and time, injury, fear and doubt, and interpersonal difficulties. Persistence themes emerged that centered around either taking active steps to help continue training and relying on internal traits or characteristics to promote persistence. Data are discussed in terms of how these individuals adopt triathlon as a part of their lifestyle and identity, and how they come to persist in training beyond IRONMAN.
ContributorsLiddell, T. Michael (Author) / Claiborn, Charles (Thesis advisor) / Kinnier, Richard (Committee member) / Margolis, Eric (Committee member) / Arizona State University (Publisher)
Created2013
151963-Thumbnail Image.png
Description
Currently, to interact with computer based systems one needs to learn the specific interface language of that system. In most cases, interaction would be much easier if it could be done in natural language. For that, we will need a module which understands natural language and automatically translates it to

Currently, to interact with computer based systems one needs to learn the specific interface language of that system. In most cases, interaction would be much easier if it could be done in natural language. For that, we will need a module which understands natural language and automatically translates it to the interface language of the system. NL2KR (Natural language to knowledge representation) v.1 system is a prototype of such a system. It is a learning based system that learns new meanings of words in terms of lambda-calculus formulas given an initial lexicon of some words and their meanings and a training corpus of sentences with their translations. As a part of this thesis, we take the prototype NL2KR v.1 system and enhance various components of it to make it usable for somewhat substantial and useful interface languages. We revamped the lexicon learning components, Inverse-lambda and Generalization modules, and redesigned the lexicon learning algorithm which uses these components to learn new meanings of words. Similarly, we re-developed an inbuilt parser of the system in Answer Set Programming (ASP) and also integrated external parser with the system. Apart from this, we added some new rich features like various system configurations and memory cache in the learning component of the NL2KR system. These enhancements helped in learning more meanings of the words, boosted performance of the system by reducing the computation time by a factor of 8 and improved the usability of the system. We evaluated the NL2KR system on iRODS domain. iRODS is a rule-oriented data system, which helps in managing large set of computer files using policies. This system provides a Rule-Oriented interface langauge whose syntactic structure is like any procedural programming language (eg. C). However, direct translation of natural language (NL) to this interface language is difficult. So, for automatic translation of NL to this language, we define a simple intermediate Policy Declarative Language (IPDL) to represent the knowledge in the policies, which then can be directly translated to iRODS rules. We develop a corpus of 100 policy statements and manually translate them to IPDL langauge. This corpus is then used for the evaluation of NL2KR system. We performed 10 fold cross validation on the system. Furthermore, using this corpus, we illustrate how different components of our NL2KR system work.
ContributorsKumbhare, Kanchan Ravishankar (Author) / Baral, Chitta (Thesis advisor) / Ye, Jieping (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2013