Matching Items (5)
Filtering by

Clear all filters

133645-Thumbnail Image.png
Description
Animal psychology is the study of how animals interact with one another, their environment, and with humans. This can be done in two different settings, the wild and captivity, and through two different approaches, academic research and practice. Academic research relies primarily on behavioral observation for data collection. Practice uses

Animal psychology is the study of how animals interact with one another, their environment, and with humans. This can be done in two different settings, the wild and captivity, and through two different approaches, academic research and practice. Academic research relies primarily on behavioral observation for data collection. Practice uses behavioral observation as well, but allows for a more hands on experience and lets the practitioner make improvements in the quality of life. I interviewed two people, one who practices in captivity, and one who does research in the wild. Dr. David Bunn has done research on wild animals in Kruger National Park in South Africa for over twenty years, studying human-animal interactions. Hilda Tresz has worked in zoos nearly forty years and specializes in chimps. Working within the same field, but utilizing a different setting and approach makes a big difference in the feel of the job. Though I found many differences between the two by doing my own research and from conducting interviews, there are many similarities to note as well. The general field of animal psychology is very rewarding, requires a lot of patience, and leads to a better understanding of animal behavior and how to care for specific species of animals. Working with captive animals allows for the opportunity to make a big difference in animal's lives through behavioral enrichment and general care. Working in the wild allows us to understand the innate animal behaviors displayed. Through practice, people get more hands on experience; while through research, you get to observe animals in their native habitats. Each setting and approach has it's own benefits depending on what each person's goals are for their job.
ContributorsDaniel, Mckenna Lynne (Author) / Childers, Daniel (Thesis director) / Hall, Sharon (Committee member) / School of Social and Behavioral Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
152115-Thumbnail Image.png
Description
Biological soil crusts (BSCs), topsoil microbial assemblages typical of arid land ecosystems, provide essential ecosystem services such as soil fertilization and stabilization against erosion. Cyanobacteria and lichens, sometimes mosses, drive BSC as primary producers, but metabolic activity is restricted to periods of hydration associated with precipitation. Climate models for the

Biological soil crusts (BSCs), topsoil microbial assemblages typical of arid land ecosystems, provide essential ecosystem services such as soil fertilization and stabilization against erosion. Cyanobacteria and lichens, sometimes mosses, drive BSC as primary producers, but metabolic activity is restricted to periods of hydration associated with precipitation. Climate models for the SW United States predict changes in precipitation frequency as a major outcome of global warming, even if models differ on the sign and magnitude of the change. BSC organisms are clearly well adapted to withstand desiccation and prolonged drought, but it is unknown if and how an alteration of the precipitation frequency may impact community composition, diversity, and ecosystem functions. To test this, we set up a BSC microcosm experiment with variable precipitation frequency treatments using a local, cyanobacteria-dominated, early-succession BSC maintained under controlled conditions in a greenhouse. Precipitation pulse size was kept constant but 11 different drought intervals were imposed, ranging between 416 to 3 days, during a period of 416 days. At the end of the experiments, bacterial community composition was analyzed by pyrosequencing of the 16s rRNA genes in the community, and a battery of functional assays were used to evaluate carbon and nitrogen cycling potentials. While changes in community composition were neither marked nor consistent at the Phylum level, there was a significant trend of decreased diversity with increasing precipitation frequency, and we detected particular bacterial phylotypes that responded to the frequency of precipitation in a consistent manner (either positively or negatively). A significant trend of increased respiration with increasingly long drought period was detected, but BSC could recover quickly from this effect. Gross photosynthesis, nitrification and denitrification remained essentially impervious to treatment. These results are consistent with the notion that BSC community structure adjustments sufficed to provide significant functional resilience, and allow us to predict that future alterations in precipitation frequency are unlikely to result in severe impacts to BSC biology or ecological relevance.
ContributorsMyers, Natalie Kristine (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Hall, Sharon (Committee member) / Turner, Benjamin (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2013
Description

The climate conversation is growing more important and necessary than ever. The media has a way of promoting a "doom and gloom" sentiment over conservation efforts and what the public has the power to do in terms of making a change. Now due to the effects of COVID-19 on the

The climate conversation is growing more important and necessary than ever. The media has a way of promoting a "doom and gloom" sentiment over conservation efforts and what the public has the power to do in terms of making a change. Now due to the effects of COVID-19 on the population's attention spans and memories, there is a need for a way to communicate climate science effectively and to encourage those who feel discouraged by climate change to find their inner power. The answer lies in photography. Making science accessible and intriguing through the art of photography is what can get people more interested and empowered to fight against climate change and alter their attitudes towards environmentalism. This thesis explains psychological research and the reasons why people feel helpless in terms of our global future. In then dives into human subjects research conducted on ASU's campus and how the survey results argue in favor of the paper's hypothesis. Additionally, ways to get involved and reasons why we need to remain hopeful are discussed.

ContributorsGorlick, Vanessa (Author) / Hall, Sharon (Thesis director) / Makings, Elizabeth (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / The Sidney Poitier New American Film School (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2023-05
158328-Thumbnail Image.png
Description
Modern agriculture faces multiple challenges: it must produce more food for a growing global population, adopt more efficient and sustainable management strategies, and adapt to climate change. One potential component of a sustainable management strategy is the application of biochar to agricultural soils. Biochar is the carbon-rich product of biomass

Modern agriculture faces multiple challenges: it must produce more food for a growing global population, adopt more efficient and sustainable management strategies, and adapt to climate change. One potential component of a sustainable management strategy is the application of biochar to agricultural soils. Biochar is the carbon-rich product of biomass pyrolysis, which contains large proportions of aromatic compounds that influence its stability in soil. Concomitant with carbon sequestration, biochar has the potential to increase soil fertility through increasing soil pH, moisture and nutrient retention. Changes in the soil physical and chemical properties can result in shifts in the soil microbiome, which are the proximate drivers of soil processes. This dissertation aims to determine the compositional and functional changes in the soil microbial community in response to the addition of a low-volatile matter biochar. First, the impact of biochar on the bacterial community was investigated in two important agricultural soils (Oxisol and Mollisol) with contrasting fertility under two different cropping systems (conventional sweet corn and zero-tillage napiergrass) one month and one year after the initial addition. This study revealed that the effects of biochar on the bacterial community were most pronounced in the Oxisol under napiergrass cultivation, however soil type was the strongest determinant of the bacterial community. A follow-up study was conducted using shotgun metagenomics to probe the functional community of soil microcosms, which contained Oxisol soil under napiergrass two years after the initial addition of biochar. Biochar significantly increased total carbon in the soils but had little impact on other soil properties. Theses analyses showed that biochar-amended soil microcosms exhibited significant shifts in the functional community and key metabolic pathways related to carbon turnover and denitrification. Given the distinct alterations to the biochar-amended community, deoxyribose nucleic acid (DNA) stable isotope probing was used to target the active populations. These analyses revealed that biochar did not significantly shift the active community in soil microcosms. Overall, these results indicate that the impact of biochar on the active soil community is transient in nature. Yet, biochar may still be a promising strategy for long-term carbon sequestration in agricultural soils.
ContributorsYu, Julian (Author) / Penton, C. Ryan (Thesis advisor) / Cadillo-Quiroz, Hinsby (Thesis advisor) / Garcia-Pichel, Ferran (Committee member) / Hall, Sharon (Committee member) / Arizona State University (Publisher)
Created2020
158570-Thumbnail Image.png
Description
Decay of plant litter represents an enormous pathway for carbon (C) into the atmosphere but our understanding of the mechanisms driving this process is particularly limited in drylands. While microbes are a dominant driver of litter decay in most ecosystems, their significance in drylands is not well understood and abiotic

Decay of plant litter represents an enormous pathway for carbon (C) into the atmosphere but our understanding of the mechanisms driving this process is particularly limited in drylands. While microbes are a dominant driver of litter decay in most ecosystems, their significance in drylands is not well understood and abiotic drivers such as photodegradation are commonly perceived to be more important. I assessed the significance of microbes to the decay of plant litter in the Sonoran Desert. I found that the variation in decay among 16 leaf litter types was correlated with microbial respiration rates (i.e. CO2 emission) from litter, and rates were strongly correlated with water-vapor sorption rates of litter. Water-vapor sorption during high-humidity periods activates microbes and subsequent respiration appears to be a significant decay mechanism. I also found that exposure to sunlight accelerated litter decay (i.e. photodegradation) and enhanced subsequent respiration rates of litter. The abundance of bacteria (but not fungi) on the surface of litter exposed to sunlight was strongly correlated with respiration rates, as well as litter decay, implying that exposure to sunlight facilitated activity of surface bacteria which were responsible for faster decay. I also assessed the response of respiration to temperature and moisture content (MC) of litter, as well as the relationship between relative humidity and MC. There was a peak in respiration rates between 35-40oC, and, unexpectedly, rates increased from 55 to 70oC with the highest peak at 70oC, suggesting the presence of thermophilic microbes or heat-tolerant enzymes. Respiration rates increased exponentially with MC, and MC was strongly correlated with relative humidity. I used these relationships, along with litter microclimate and C loss data to estimate the contribution of this pathway to litter C loss over 34 months. Respiration was responsible for 24% of the total C lost from litter – this represents a substantial pathway for C loss, over twice as large as the combination of thermal and photochemical abiotic emission. My findings elucidate two mechanisms that explain why microbial drivers were more significant than commonly assumed: activation of microbes via water-vapor sorption and high respiration rates at high temperatures.
ContributorsTomes, Alexander (Author) / Day, Thomas (Thesis advisor) / Garcia-Pichel, Ferran (Committee member) / Ball, Becky (Committee member) / Hall, Sharon (Committee member) / Roberson, Robert (Committee member) / Arizona State University (Publisher)
Created2020