Matching Items (1,144)
Filtering by

Clear all filters

150053-Thumbnail Image.png
Description
While the literature on caregivers of loved ones with Alzheimer's Disease and Related Disorders (ADRD) has continued to grow, the relationship of ethnicity and acculturation factors with regards to the coping strategies used by caregivers has not been extensively explored. The current study included participants from the Palo Alto site

While the literature on caregivers of loved ones with Alzheimer's Disease and Related Disorders (ADRD) has continued to grow, the relationship of ethnicity and acculturation factors with regards to the coping strategies used by caregivers has not been extensively explored. The current study included participants from the Palo Alto site of the Resources for Enhancing Alzheimer's Caregiver Health (REACH) project. The study examined differences in coping strategies between 140 non-Hispanic White, 45 less acculturated Latina, and 61 more acculturated Latina caregivers. Univariate and Multivariate Analysis of Variance, as well as post hoc analyses, were conducted to determine the differences among the three groups. Results indicated less acculturated Latina caregivers employ more avoidant coping strategies compared to non-Hispanic White caregivers. However, no differences were found among the other groups in their use of avoidance coping. Moreover, there were no differences found in the use of social support seeking, count your blessings, problem focused, and blaming others coping among the three groups. These findings have important implications for the design of culturally relevant psychoeducational and therapeutic interventions aimed towards meeting the individual needs of these three populations. In addition, the findings expand on the understanding of maladaptive coping strategies that may be potentially exacerbating caregiver distress among Latina caregivers.
ContributorsFelix, Vitae (Author) / Arciniega, Guillermo M (Thesis advisor) / Robinson-Kurpius, Sharon (Committee member) / Coon, David W. (Committee member) / Arizona State University (Publisher)
Created2011
150058-Thumbnail Image.png
Description
The current study explored whether intrinsically religious individuals are able to separate the "sin" from the "sinner" (i.e., separate category membership from behavior) when judging homosexual individuals, or whether they are instead subject to the negativity bias (judgments based solely on category membership) in moral judgments. All effects were expected

The current study explored whether intrinsically religious individuals are able to separate the "sin" from the "sinner" (i.e., separate category membership from behavior) when judging homosexual individuals, or whether they are instead subject to the negativity bias (judgments based solely on category membership) in moral judgments. All effects were expected to occur only for participants high in homophobia. Participants were 305 undergraduate male and female students at a large, public university in the southwestern U.S. Respondents read one of five scenarios that described gay or straight targets who were celibate or engaged in same or opposite sex relationships, then were asked to respond to a series of questions evaluating attitudes and behavioral intentions toward the target. Results revealed that homophobia led to a negativity bias in judgments of gay targets, which was intensified by intrinsic religiosity. However, individuals high on intrinsic religiosity and high on homophobia also differentiated between gay targets based on sexual behavior, such that gay targets who were celibate or in an opposite-sex relationship were rated more favorably than gay targets in a same-sex relationship. These findings demonstrate that the negativity bias and "sin vs. sinner" differentiation may both be occurring for intrinsically religious individuals. The moderating effect of homophobia on the interaction between intrinsic religiosity and judgments of gay and straight targets shows us that religiosity itself is not inherently tolerant or intolerant.
ContributorsFilip-Crawford, Gabrielle (Author) / Nagoshi, Craig T. (Thesis advisor) / Kwan, Virginia S.Y. (Committee member) / Neuberg, Steven L. (Committee member) / Arizona State University (Publisher)
Created2011
149705-Thumbnail Image.png
Description
Family adaptation to child developmental disability is a dynamic transactional process that has yet to be tested in a longitudinal, rigorous fashion. In addition, although children with developmental delays frequently have behavior problems, not enough research has examined possible underlying mechanisms in the relation between child developmental delay, adaptation and

Family adaptation to child developmental disability is a dynamic transactional process that has yet to be tested in a longitudinal, rigorous fashion. In addition, although children with developmental delays frequently have behavior problems, not enough research has examined possible underlying mechanisms in the relation between child developmental delay, adaptation and behavior problems. In the current study, factor analysis examined how best to conceptualize the construct of family adaptation to developmental delay. Also, longitudinal growth curve modeling tested models in which child behavior problems mediated the relation between developmental risk and indices of family adaptation. Participants included 130 typically developing children and their families (Mental Development Index [MDI] > 85) and 104 children with developmental delays and their families (MDI < 85). Data were collected yearly between the ages of three and eight as part of a multi-site, longitudinal investigation examining the interrelations among children's developmental status, family processes, and the emergence of child psychopathology. Results of the current study indicated that adaptation is best conceptualized as a multi-index construct. Different aspects of adaptation changed in unique ways over time, with some facets of adaptation remaining stable while others fluctuated. Child internalizing and externalizing behavior problems were found to decrease over time for both children with developmental delays and typically developing children. Child behavior problems were also found to mediate the relation between developmental risk and family adaptation for over half of the mediation pathways. Significant mediation results indicated that children with developmental delays showed higher early levels of behavior problems, which in turn was associated with more maladaptive adaptation. These findings provide further evidence that families of children with developmental delays experience both positive and more challenging changes in their families over time. This study implies important next steps for research and clinical practice in the area of developmental disability.
ContributorsPedersen y Arbona, Anita (Author) / Crnic, Keith A (Thesis advisor) / Sandler, Irwin (Committee member) / Lemery, Kathryn (Committee member) / Enders, Craig (Committee member) / Arizona State University (Publisher)
Created2011
149708-Thumbnail Image.png
Description
Semiconductor manufacturing facilities are very complex and capital intensive in nature. During the lifecycle of these facilities various disciplines come together, generate and use a tremendous amount of building and process information to support various decisions that enable them to successfully design, build and sustain these advanced facilities. However, a

Semiconductor manufacturing facilities are very complex and capital intensive in nature. During the lifecycle of these facilities various disciplines come together, generate and use a tremendous amount of building and process information to support various decisions that enable them to successfully design, build and sustain these advanced facilities. However, a majority of the information generated and processes taking place are neither integrated nor interoperable and result in a high degree of redundancy. The objective of this thesis is to build an interoperable Building Information Model (BIM) for the Base-Build and Tool Installation in a semiconductor manufacturing facility. It examines existing processes and data exchange standards available to facilitate the implementation of BIM and provides a framework for the development of processes and standards that can help in building an intelligent information model for a semiconductor manufacturing facility. To understand the nature of the flow of information between the various stakeholders the flow of information between the facility designer, process tool manufacturer and tool layout designer is examined. An information model for the base build and process tool is built and the industry standards SEMI E6 and SEMI E51 are used as a basis to model the information. It is found that applications used to create information models support interoperable industry standard formats such as the Industry Foundation Classes (IFC) and ISO 15926 in a limited manner. A gap analysis has revealed that interoperability standards applicable to the semiconductor manufacturing industry such as the IFC and ISO15926 need to be expanded to support information transfers unique to the industry. Information modeling for a semiconductor manufacturing facility is unique in that it is a process model (Process Tool Information Model) within a building model (Building Information Model), each of them supported more robustly by different interoperability standards. Applications support interoperability data standards specific to the domain or industry they serve but information transfers need to occur between the various domains. To facilitate flow of information between the different domains it is recommended that a mapping of the industry standards be undertaken and translators between them be developed for business use.
ContributorsPindukuri, Shruthi (Author) / Chasey, Allan D (Thesis advisor) / Wiezel, Avi (Committee member) / Mamlouk, Michael (Committee member) / Arizona State University (Publisher)
Created2011
150023-Thumbnail Image.png
Description
An emerging body of literature suggests that humans likely have multiple threat avoidance systems that enable us to detect and avoid threats in our environment, such as disease threats and physical safety threats. These systems are presumed to be domain-specific, each handling one class of potential threats, and previous research

An emerging body of literature suggests that humans likely have multiple threat avoidance systems that enable us to detect and avoid threats in our environment, such as disease threats and physical safety threats. These systems are presumed to be domain-specific, each handling one class of potential threats, and previous research generally supports this assumption. Previous research has not, however, directly tested the domain-specificity of disease avoidance and self-protection by showing that activating one threat management system does not lead to responses consistent only with a different threat management system. Here, the domain- specificity of the disease avoidance and self-protection systems is directly tested using the lexical decision task, a measure of stereotype accessibility, and the implicit association test. Results, although inconclusive, more strongly support a series of domain-specific threat management systems than a single, domain- general system
ContributorsAnderson, Uriah Steven (Author) / Kenrick, Douglas T. (Thesis advisor) / Shiota, Michelle N. (Committee member) / Neuberg, Steven L. (Committee member) / Becker, David V (Committee member) / Arizona State University (Publisher)
Created2011
150029-Thumbnail Image.png
Description
A dual-channel directional digital hearing aid (DHA) front-end using a fully differential difference amplifier (FDDA) based Microphone interface circuit (MIC) for a capacitive Micro Electro Mechanical Systems (MEMS) microphones and an adaptive-power analog font end (AFE) is presented. The Microphone interface circuit based on FDDA converts

A dual-channel directional digital hearing aid (DHA) front-end using a fully differential difference amplifier (FDDA) based Microphone interface circuit (MIC) for a capacitive Micro Electro Mechanical Systems (MEMS) microphones and an adaptive-power analog font end (AFE) is presented. The Microphone interface circuit based on FDDA converts the capacitance variations into voltage signal, achieves a noise of 32 dB SPL (sound pressure level) and an SNR of 72 dB, additionally it also performs single to differential conversion allowing for fully differential analog signal chain. The analog front-end consists of 40dB VGA and a power scalable continuous time sigma delta ADC, with 68dB SNR dissipating 67u¬W from a 1.2V supply. The ADC implements a self calibrating feedback DAC, for calibrating the 2nd order non-linearity. The VGA and power scalable ADC is fabricated on 0.25 um CMOS TSMC process. The dual channels of the DHA are precisely matched and achieve about 0.5dB gain mismatch, resulting in greater than 5dB directivity index. This will enable a highly integrated and low power DHA
ContributorsNaqvi, Syed Roomi (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Chae, Junseok (Committee member) / Barnby, Hugh (Committee member) / Aberle, James T., 1961- (Committee member) / Arizona State University (Publisher)
Created2011
150035-Thumbnail Image.png
Description
Concrete columns constitute the fundamental supports of buildings, bridges, and various other infrastructures, and their failure could lead to the collapse of the entire structure. As such, great effort goes into improving the fire resistance of such columns. In a time sensitive fire situation, a delay in the failure of

Concrete columns constitute the fundamental supports of buildings, bridges, and various other infrastructures, and their failure could lead to the collapse of the entire structure. As such, great effort goes into improving the fire resistance of such columns. In a time sensitive fire situation, a delay in the failure of critical load bearing structures can lead to an increase in time allowed for the evacuation of occupants, recovery of property, and access to the fire. Much work has been done in improving the structural performance of concrete including reducing column sizes and providing a safer structure. As a result, high-strength (HS) concrete has been developed to fulfill the needs of such improvements. HS concrete varies from normal-strength (NS) concrete in that it has a higher stiffness, lower permeability and larger durability. This, unfortunately, has resulted in poor performance under fire. The lower permeability allows for water vapor to build up causing HS concrete to suffer from explosive spalling under rapid heating. In addition, the coefficient of thermal expansion (CTE) of HS concrete is lower than that of NS concrete. In this study, the effects of introducing a region of crumb rubber concrete into a steel-reinforced concrete column were analyzed. The inclusion of crumb rubber concrete into a column will greatly increase the thermal resistivity of the overall column, leading to a reduction in core temperature as well as the rate at which the column is heated. Different cases were analyzed while varying the positioning of the crumb-rubber region to characterize the effect of position on the improvement of fire resistance. Computer simulated finite element analysis was used to calculate the temperature and strain distribution with time across the column's cross-sectional area with specific interest in the steel - concrete region. Of the several cases which were investigated, it was found that the improvement of time before failure ranged between 32 to 45 minutes.
ContributorsZiadeh, Bassam Mohammed (Author) / Phelan, Patrick (Thesis advisor) / Kaloush, Kamil (Thesis advisor) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2011
150036-Thumbnail Image.png
Description
Demand for biosensor research applications is growing steadily. According to a new report by Frost & Sullivan, the biosensor market is expected to reach $14.42 billion by 2016. Clinical diagnostic applications continue to be the largest market for biosensors, and this demand is likely to continue through 2016 and beyond.

Demand for biosensor research applications is growing steadily. According to a new report by Frost & Sullivan, the biosensor market is expected to reach $14.42 billion by 2016. Clinical diagnostic applications continue to be the largest market for biosensors, and this demand is likely to continue through 2016 and beyond. Biosensor technology for use in clinical diagnostics, however, requires translational research that moves bench science and theoretical knowledge toward marketable products. Despite the high volume of academic research to date, only a handful of biomedical devices have become viable commercial applications. Academic research must increase its focus on practical uses for biosensors. This dissertation is an example of this increased focus, and discusses work to advance microfluidic-based protein biosensor technologies for practical use in clinical diagnostics. Four areas of work are discussed: The first involved work to develop reusable/reconfigurable biosensors that are useful in applications like biochemical science and analytical chemistry that require detailed sensor calibration. This work resulted in a prototype sensor and an in-situ electrochemical surface regeneration technique that can be used to produce microfluidic-based reusable biosensors. The second area of work looked at non-specific adsorption (NSA) of biomolecules, which is a persistent challenge in conventional microfluidic biosensors. The results of this work produced design methods that reduce the NSA. The third area of work involved a novel microfluidic sensing platform that was designed to detect target biomarkers using competitive protein adsorption. This technique uses physical adsorption of proteins to a surface rather than complex and time-consuming immobilization procedures. This method enabled us to selectively detect a thyroid cancer biomarker, thyroglobulin, in a controlled-proteins cocktail and a cardiovascular biomarker, fibrinogen, in undiluted human serum. The fourth area of work involved expanding the technique to produce a unique protein identification method; Pattern-recognition. A sample mixture of proteins generates a distinctive composite pattern upon interaction with a sensing platform consisting of multiple surfaces whereby each surface consists of a distinct type of protein pre-adsorbed on the surface. The utility of the "pattern-recognition" sensing mechanism was then verified via recognition of a particular biomarker, C-reactive protein, in the cocktail sample mixture.
ContributorsChoi, Seokheun (Author) / Chae, Junseok (Thesis advisor) / Tao, Nongjian (Committee member) / Yu, Hongyu (Committee member) / Forzani, Erica (Committee member) / Arizona State University (Publisher)
Created2011
150044-Thumbnail Image.png
Description
The purpose of this study was to investigate the effect of partial exemplar experience on category formation and use. Participants had either complete or limited access to the three dimensions that defined categories by dimensions within different modalities. The concept of "crucial dimension" was introduced and the role it plays

The purpose of this study was to investigate the effect of partial exemplar experience on category formation and use. Participants had either complete or limited access to the three dimensions that defined categories by dimensions within different modalities. The concept of "crucial dimension" was introduced and the role it plays in category definition was explained. It was hypothesized that the effects of partial experience are not explained by a shifting of attention between dimensions (Taylor & Ross, 2009) but rather by an increased reliance on prototypical values used to fill in missing information during incomplete experiences. Results indicated that participants (1) do not fill in missing information with prototypical values, (2) integrate information less efficiently between different modalities than within a single modality, and (3) have difficulty learning only when partial experience prevents access to diagnostic information.
ContributorsCrawford, Thomas (Author) / Homa, Donald (Thesis advisor) / Mcbeath, Micheal (Committee member) / Glenberg, Arthur (Committee member) / Arizona State University (Publisher)
Created2011
149988-Thumbnail Image.png
Description
Alzheimer's Disease (AD) is a debilitating neurodegenerative disease. The disease leads to dementia and loss of cognitive functions and affects about 4.5 million people in the United States. It is the 7th leading cause of death and is a huge financial burden on the healthcare industry. There are no means

Alzheimer's Disease (AD) is a debilitating neurodegenerative disease. The disease leads to dementia and loss of cognitive functions and affects about 4.5 million people in the United States. It is the 7th leading cause of death and is a huge financial burden on the healthcare industry. There are no means of diagnosing the disease before neurodegeneration is significant and sadly there is no cure that controls its progression. The protein beta-amyloid or Aâ plays an important role in the progression of the disease. It is formed from the cleavage of the Amyloid Precursor Protein by two enzymes - â and ã-secretases and is found in the plaques that are deposits found in Alzheimer brains. This work describes the generation of therapeutics based on inhibition of the cleavage by â-secretase. Using in-vitro recombinant antibody display libraries to screen for single chain variable fragment (scFv) antibodies; this work describes the isolation and characterization of scFv that target the â-secretase cleavage site on APP. This approach is especially relevant since non-specific inhibition of the enzyme may have undesirable effects since the enzyme has been shown to have other important substrates. The scFv iBSEC1 successfully recognized APP, reduced â-secretase cleavage of APP and reduced Aâ levels in a cell model of Alzheimer's Disease. This work then describes the first application of bispecific antibody therapeutics to Alzheimer's Disease. iBSEC1 scFv was combined with a proteolytic scFv that enhances the "good" pathway (á-secretase cleavage) that results in alternative cleavage of APP to generate the bispecific tandem scFv - DIA10D. DIA10D reduced APP cleavage by â-secretase and steered it towards the "good" pathway thus increasing the generation of the fragment sAPPá which is neuroprotective. Finally, treatment with iBSEC1 is evaluated for reduced oxidative stress, which is observed in cells over expressing APP when they are exposed to stress. Recombinant antibody based therapeutics like scFv have several advantages since they retain the high specificity of the antibodies but are safer since they lack the constant region and are smaller, potentially facilitating easier delivery to the brain
ContributorsBoddapati, Shanta (Author) / Sierks, Michael (Thesis advisor) / Arizona State University (Publisher)
Created2011