Matching Items (844)
Filtering by

Clear all filters

151966-Thumbnail Image.png
Description
The purpose of the current study was to use structural equation modeling-based quantitative genetic models to characterize latent genetic and environmental influences on proneness to three discrete negative emotions in middle childhood, according to mother-report, father-report and in-home observation. One primary aim was to test the extent to which covariance

The purpose of the current study was to use structural equation modeling-based quantitative genetic models to characterize latent genetic and environmental influences on proneness to three discrete negative emotions in middle childhood, according to mother-report, father-report and in-home observation. One primary aim was to test the extent to which covariance among the three emotions could be accounted for by a single, common genetically- and environmentally-influenced negative emotionality factor. A second aim was to examine the extent to which different reporters appeared to be tapping into the same genetically- and environmentally-influenced aspects of each emotion. According to mother- and father-report, moderate to high genetic influences were evident for all emotions, with mother- and father-report of fear and father-report of anger showing the highest heritability. Significant common environmental influences were also found for mother-report of anger and sadness in both univariate and multivariate models. For observed emotion, anger was moderately heritable with no evidence for common environmental variance, but sadness, object fear and social fear all showed modest to moderate common environmental influences and no significant genetic variance. In addition, cholesky decompositions examining genetic and environmental influences across reporter suggested that despite considerable overlap between mother-report and father-report, there was also reporter-specific variance on anger, sadness, and fear. Specifically, there were significant common environmental influences on mother-report of anger- and sadness that were not shared with father-report, and genetic influences on father-report of sadness and fear that were not shared with mother-report. In-home observations were not highly correlated enough with parent-report to support multivariate analysis for any emotion. Finally, according to both mother- and father-report, a single set of genetic and environmental influences was sufficient to account for covariance among all three negative emotions. However, fear was primarily explained by genetic influences not shared with other emotions, and anger also showed considerable emotion-specific genetic variance. In both cases, findings support the value of a more emotion-specific approach to temperament, and highlight the need to consider distinctions as well as commonalities across emotions, reporters and situations.
ContributorsClifford, Sierra (Author) / Lemery, Kathryn (Thesis advisor) / Shiota, Michelle (Committee member) / Eisenberg, Nancy (Committee member) / Arizona State University (Publisher)
Created2013
151779-Thumbnail Image.png
Description
Photovoltaic (PV) module nameplates typically provide the module's electrical characteristics at standard test conditions (STC). The STC conditions are: irradiance of 1000 W/m2, cell temperature of 25oC and sunlight spectrum at air mass 1.5. However, modules in the field experience a wide range of environmental conditions which affect their electrical

Photovoltaic (PV) module nameplates typically provide the module's electrical characteristics at standard test conditions (STC). The STC conditions are: irradiance of 1000 W/m2, cell temperature of 25oC and sunlight spectrum at air mass 1.5. However, modules in the field experience a wide range of environmental conditions which affect their electrical characteristics and render the nameplate data insufficient in determining a module's overall, actual field performance. To make sound technical and financial decisions, designers and investors need additional performance data to determine the energy produced by modules operating under various field conditions. The angle of incidence (AOI) of sunlight on PV modules is one of the major parameters which dictate the amount of light reaching the solar cells. The experiment was carried out at the Arizona State University- Photovoltaic Reliability Laboratory (ASU-PRL). The data obtained was processed in accordance with the IEC 61853-2 model to obtain relative optical response of the modules (response which does not include the cosine effect). The results were then compared with theoretical models for air-glass interface and also with the empirical model developed by Sandia National Laboratories. The results showed that all modules with glass as the superstrate had identical optical response and were in agreement with both the IEC 61853-2 model and other theoretical and empirical models. The performance degradation of module over years of exposure in the field is dependent upon factors such as environmental conditions, system configuration, etc. Analyzing the degradation of power and other related performance parameters over time will provide vital information regarding possible degradation rates and mechanisms of the modules. An extensive study was conducted by previous ASU-PRL students on approximately 1700 modules which have over 13 years of hot- dry climatic field condition. An analysis of the results obtained in previous ASU-PRL studies show that the major degradation in crystalline silicon modules having glass/polymer construction is encapsulant discoloration (causing short circuit current drop) and solder bond degradation (causing fill factor drop due to series resistance increase). The power degradation for crystalline silicon modules having glass/glass construction was primarily attributed to encapsulant delamination (causing open-circuit voltage drop).
ContributorsVasantha Janakeeraman, Suryanarayana (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2013
151815-Thumbnail Image.png
Description
The field of education has been immensely benefited by major breakthroughs in technology. The arrival of computers and the internet made student-teacher interaction from different parts of the world viable, increasing the reach of the educator to hitherto remote corners of the world. The arrival of mobile phones in the

The field of education has been immensely benefited by major breakthroughs in technology. The arrival of computers and the internet made student-teacher interaction from different parts of the world viable, increasing the reach of the educator to hitherto remote corners of the world. The arrival of mobile phones in the recent past has the potential to provide the next paradigm shift in the way education is conducted. It combines the universal reach and powerful visualization capabilities of the computer with intimacy and portability. Engineering education is a field which can exploit the benefits of mobile devices to enhance learning and spread essential technical know-how to different parts of the world. In this thesis, I present AJDSP, an Android application evolved from JDSP, providing an intuitive and a easy to use environment for signal processing education. AJDSP is a graphical programming laboratory for digital signal processing developed for the Android platform. It is designed to provide utility; both as a supplement to traditional classroom learning and as a tool for self-learning. The architecture of AJDSP is based on the Model-View-Controller paradigm optimized for the Android platform. The extensive set of function modules cover a wide range of basic signal processing areas such as convolution, fast Fourier transform, z transform and filter design. The simple and intuitive user interface inspired from iJDSP is designed to facilitate ease of navigation and to provide the user with an intimate learning environment. Rich visualizations necessary to understand mathematically intensive signal processing algorithms have been incorporated into the software. Interactive demonstrations boosting student understanding of concepts like convolution and the relation between different signal domains have also been developed. A set of detailed assessments to evaluate the application has been conducted for graduate and senior-level undergraduate students.
ContributorsRanganath, Suhas (Author) / Spanias, Andreas (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2013
152010-Thumbnail Image.png
Description
Micro Electro Mechanical Systems (MEMS) is one of the fastest growing field in silicon industry. Low cost production is key for any company to improve their market share. MEMS testing is challenging since input to test a MEMS device require physical stimulus like acceleration, pressure etc. Also, MEMS device vary

Micro Electro Mechanical Systems (MEMS) is one of the fastest growing field in silicon industry. Low cost production is key for any company to improve their market share. MEMS testing is challenging since input to test a MEMS device require physical stimulus like acceleration, pressure etc. Also, MEMS device vary with process and requires calibration to make them reliable. This increases test cost and testing time. This challenge can be overcome by combining electrical stimulus based testing along with statistical analysis on MEMS response for electrical stimulus and also limited physical stimulus response data. This thesis proposes electrical stimulus based built in self test(BIST) which can be used to get MEMS data and later this data can be used for statistical analysis. A capacitive MEMS accelerometer is considered to test this BIST approach. This BIST circuit overhead is less and utilizes most of the standard readout circuit. This thesis discusses accelerometer response for electrical stimulus and BIST architecture. As a part of this BIST circuit, a second order sigma delta modulator has been designed. This modulator has a sampling frequency of 1MHz and bandwidth of 6KHz. SNDR of 60dB is achieved with 1Vpp differential input signal and 3.3V supply
ContributorsKundur, Vinay (Author) / Bakkaloglu, Bertan (Committee member) / Ozev, Sule (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2013
152012-Thumbnail Image.png
Description
As renewable energy becomes more prevalent in transmission and distribution systems, it is vital to understand the uncertainty and variability that accompany these resources. Microgrids have the potential to mitigate the effects of resource uncertainty. With the ability to exist in either an islanded mode or maintain connections with the

As renewable energy becomes more prevalent in transmission and distribution systems, it is vital to understand the uncertainty and variability that accompany these resources. Microgrids have the potential to mitigate the effects of resource uncertainty. With the ability to exist in either an islanded mode or maintain connections with the main-grid, a microgrid can increase reliability, defer T&D; infrastructure and effectively utilize demand response. This study presents a co-optimization framework for a microgrid with solar photovoltaic generation, emergency generation, and transmission switching. Today unit commitment models ensure reliability with deterministic criteria, which are either insufficient to ensure reliability or can degrade economic efficiency for a microgrid that uses a large penetration of variable renewable resources. A stochastic mixed integer linear program for day-ahead unit commitment is proposed to account for uncertainty inherent in PV generation. The model incorporates the ability to trade energy and ancillary services with the main-grid, including the designation of firm and non-firm imports, which captures the ability to allow for reserve sharing between the two systems. In order to manage the computational complexities, a Benders' decomposition approach is utilized. The commitment schedule was validated with solar scenario analysis, i.e., Monte-Carlo simulations are conducted to test the proposed dispatch solution. For this test case, there were few deviations to power imports, 0.007% of solar was curtailed, no load shedding occurred in the main-grid, and 1.70% load shedding occurred in the microgrid.
ContributorsHytowitz, Robin Broder (Author) / Hedman, Kory W (Thesis advisor) / Heydt, Gerald T (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2013
151648-Thumbnail Image.png
Description
Since its inception about three decades ago, silicon on insulator (SOI) technology has come a long way to be included in the microelectronics roadmap. Earlier, scientists and engineers focused on ways to increase the microprocessor clock frequency and speed. Today, with smart phones and tablets gaining popularity, power consumption has

Since its inception about three decades ago, silicon on insulator (SOI) technology has come a long way to be included in the microelectronics roadmap. Earlier, scientists and engineers focused on ways to increase the microprocessor clock frequency and speed. Today, with smart phones and tablets gaining popularity, power consumption has become a major factor. In this thesis, self-heating effects in a 25nm fully depleted (FD) SOI device are studied by implementing a 2-D particle based device simulator coupled self-consistently with the energy balance equations for both acoustic and optical phonons. Semi-analytical expressions for acoustic and optical phonon scattering rates (all modes) are derived and evaluated using quadratic dispersion relationships. Moreover, probability distribution functions for the final polar angle after scattering is also computed and the rejection technique is implemented for its selection. Since the temperature profile varies throughout the device, temperature dependent scattering tables are used for the electron transport kernel. The phonon energy balance equations are also modified to account for inelasticity in acoustic phonon scattering for all branches. Results obtained from this simulation help in understanding self-heating and the effects it has on the device characteristics. The temperature profiles in the device show a decreasing trend which can be attributed to the inelastic interaction between the electrons and the acoustic phonons. This is further proven by comparing the temperature plots with the simulation results that assume the elastic and equipartition approximation for acoustic and the Einstein model for optical phonons. Thus, acoustic phonon inelasticity and the quadratic phonon dispersion relationships play a crucial role in studying self-heating effects.
ContributorsGada, Manan Laxmichand (Author) / Vasileska, Dragica (Thesis advisor) / Ferry, David K. (Committee member) / Goodnick, Stephen M (Committee member) / Arizona State University (Publisher)
Created2013
151330-Thumbnail Image.png
Description
After natural menopause in women, androstenedione becomes the primary hormone secreted by the residual follicle deplete ovaries. Two independent studies, in rodents that had undergone ovarian follicular depletion, found that higher serum androstenedione levels correlated with increased working memory errors. This led to the hypothesis that androstenedione impairs memory. The

After natural menopause in women, androstenedione becomes the primary hormone secreted by the residual follicle deplete ovaries. Two independent studies, in rodents that had undergone ovarian follicular depletion, found that higher serum androstenedione levels correlated with increased working memory errors. This led to the hypothesis that androstenedione impairs memory. The current study directly tested this hypothesis, examining the cognitive effects of androstenedione administration in a rodent model. Middle-aged ovariectomized rats received vehicle or one of two doses of androstenedione (4 or 8 mg/kg daily). Rats were tested on a spatial working and reference memory maze battery including the water radial arm maze, Morris maze, and delay-match-to-sample task. Results showed that androstenedione at the highest dose impaired reference memory and working memory, including ability to maintain performance as memory demand was elevated. The latter was true for both high temporal demand memory retention of one item of spatial information, as well as the ability to handle multiple items of spatial working memory information. Glutamic acid decarboxylase (GAD) levels were measured in multiple brain regions to determine whether the gamma-aminobutyric acid (GABA) system mediates androstenedione's cognitive impairments. Results showed that higher entorhinal cortex GAD levels were correlated with poorer Morris maze performance, regardless of androstenedione treatment. These findings suggest that androstenedione, the main hormone produced by the follicle deplete ovary, is detrimental to spatial learning, reference memory, and working memory, and that spatial reference memory performance might be related to the GABAergic system.
ContributorsCamp, Bryan Walter (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Olive, Michael F (Committee member) / Conrad, Cheryl D. (Committee member) / Arizona State University (Publisher)
Created2012
151338-Thumbnail Image.png
Description
Levels of heavy episodic drinking peak during emerging adulthood and contribute to the experience of negative consequences. Previous research has identified a number of trait-like personality characteristics that are associated with drinking. Studies of the Acquired Preparedness Model have supported positive expectancies, and to a lesser extent negative expectancies, as

Levels of heavy episodic drinking peak during emerging adulthood and contribute to the experience of negative consequences. Previous research has identified a number of trait-like personality characteristics that are associated with drinking. Studies of the Acquired Preparedness Model have supported positive expectancies, and to a lesser extent negative expectancies, as mediators of the relation between trait-like characteristics and alcohol outcomes. However, expectancies measured via self-report may reflect differences in learned expectancies in spite of similar alcohol-related responses, or they may reflect true individual differences in subjective responses to alcohol. The current study addressed this gap in the literature by assessing the relative roles of expectancies and subjective response as mediators within the APM in a sample of 236 emerging adults (74.7% male) participating in a placebo-controlled alcohol challenge study. The study tested four mediation models collapsed across beverage condition as well as eight separate mediation models with four models (2 beverage by 2 expectancy/subjective response) for each outcome (alcohol use and alcohol-related problems). Consistent with previous studies, SS was positively associated with alcohol outcomes in models collapsed across beverage condition. SS was also associated with positive subjective response in collapsed models and in the alcohol models. The hypothesized negative relation between SS and sedation was not significant. In contrast to previous studies, neither stimulation nor sedation predicted either weekly drinking or alcohol-related problems. While stimulation and alcohol use appeared to have a positive and significant association, this relation did not hold when controlling for SS, suggesting that SS and stimulation account for shared variability in drinking behavior. Failure to find this association in the placebo group suggests that, while explicit positive expectancies are related to alcohol use after controlling for levels of sensation seeking, implicit expectancies (at least as assessed by a placebo manipulation) are not. That the relation between SS and stimulation held only in the alcohol condition in analyses separate by beverage condition indicates that sensation seeking is a significant predictor of positive subjective response to alcohol (stimulation), potentially above and beyond expectancies.
ContributorsScott, Caitlin (Author) / Corbin, William (Thesis advisor) / Shiota, Michelle (Committee member) / Chassin, Laurie (Committee member) / Arizona State University (Publisher)
Created2012
151354-Thumbnail Image.png
Description
The design and development of analog/mixed-signal (AMS) integrated circuits (ICs) is becoming increasingly expensive, complex, and lengthy. Rapid prototyping and emulation of analog ICs will be significant in the design and testing of complex analog systems. A new approach, Programmable ANalog Device Array (PANDA) that maps any AMS design problem

The design and development of analog/mixed-signal (AMS) integrated circuits (ICs) is becoming increasingly expensive, complex, and lengthy. Rapid prototyping and emulation of analog ICs will be significant in the design and testing of complex analog systems. A new approach, Programmable ANalog Device Array (PANDA) that maps any AMS design problem to a transistor-level programmable hardware, is proposed. This approach enables fast system level validation and a reduction in post-Silicon bugs, minimizing design risk and cost. The unique features of the approach include 1) transistor-level programmability that emulates each transistor behavior in an analog design, achieving very fine granularity of reconfiguration; 2) programmable switches that are treated as a design component during analog transistor emulating, and optimized with the reconfiguration matrix; 3) compensation of AC performance degradation through boosting the bias current. Based on these principles, a digitally controlled PANDA platform is designed at 45nm node that can map AMS modules across 22nm to 90nm technology nodes. A systematic emulation approach to map any analog transistor to PANDA cell is proposed, which achieves transistor level matching accuracy of less than 5% for ID and less than 10% for Rout and Gm. Circuit level analog metrics of a voltage-controlled oscillator (VCO) emulated by PANDA, match to those of the original designs in 90nm nodes with less than a 5% error. Voltage-controlled delay lines at 65nm and 90nm are emulated by 32nm PANDA, which successfully match important analog metrics. And at-speed emulation is achieved as well. Several other 90nm analog blocks are successfully emulated by the 45nm PANDA platform, including a folded-cascode operational amplifier and a sample-and-hold module (S/H)
ContributorsXu, Cheng (Author) / Cao, Yu (Thesis advisor) / Blain Christen, Jennifer (Committee member) / Bakkaloglu, Bertan (Committee member) / Arizona State University (Publisher)
Created2012
151360-Thumbnail Image.png
Description
The worldwide demand for electric energy is slated to increase by 80% between the years 1990 and 2040. In order to satisfy this increase in load, many new generators and transmission lines are planned. Implementations of various plans that can augment existing infrastructure have been hindered due to environmental constraints,

The worldwide demand for electric energy is slated to increase by 80% between the years 1990 and 2040. In order to satisfy this increase in load, many new generators and transmission lines are planned. Implementations of various plans that can augment existing infrastructure have been hindered due to environmental constraints, public opposition and difficulties in obtaining right-of-way. As a result, stress on the present electrical infrastructure has increased, resulting in congestion within the system. The aim of this research is to analyze three techniques that could improve the power transfer capability of the present electric grid. These include line compaction, use of high temperature low sag conductors and high phase order systems. The above methods were selected as they could be readily employed without the need for additional right-of-way. Results from the line compaction tests indicate that line compaction up to 30% is possible and this increases the power transfer capability up to 53%. Additional advantages of employing line compaction are the reduction in electric and magnetic fields, increase in system stability and better voltage regulation. High temperature low sag conductors that were applied on thermally limited lines were seen to increase the power transfer capability. However, a disadvantage of this technique was that the second most congested line, limits the power transfer capability of the system. High phase (six phase) order system was noted to have several advantages over three phase system such as lower voltage requirement to transfer equal amount of power and lower electric and magnetic field across the right of way. An IEEE 9 and 118 bus test system were used to evaluate the above mentioned techniques.
ContributorsDave, Kushal (Author) / Gorur, Dr. Ravi (Thesis advisor) / Heydt, Dr. Gerald (Committee member) / Vittal, Dr. Vijay (Committee member) / Arizona State University (Publisher)
Created2012