Matching Items (498)
Filtering by

Clear all filters

148116-Thumbnail Image.png
Description

Humans use emotions to communicate social cues to our peers on a daily basis. Are we able to identify context from facial expressions and match them to specific scenarios? This experiment found that people can effectively distinguish negative and positive emotions from each other from a short description. However, further

Humans use emotions to communicate social cues to our peers on a daily basis. Are we able to identify context from facial expressions and match them to specific scenarios? This experiment found that people can effectively distinguish negative and positive emotions from each other from a short description. However, further research is needed to find out whether humans can learn to perceive emotions only from contextual explanations.

ContributorsCulbert, Bailie (Author) / Hartwell, Leland (Thesis director) / McAvoy, Mary (Committee member) / School of Life Sciences (Contributor) / School of Criminology and Criminal Justice (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148021-Thumbnail Image.png
Description

Since the inception of what is now known as the Behavioral Analysis Unit (BAU) at the Federal Bureau of Investigation (FBI) in the 1970s, criminal profiling has become an increasingly prevalent entity in both forensic science and the popular imagination. The fundamental idea of which profiling is premised – behavior

Since the inception of what is now known as the Behavioral Analysis Unit (BAU) at the Federal Bureau of Investigation (FBI) in the 1970s, criminal profiling has become an increasingly prevalent entity in both forensic science and the popular imagination. The fundamental idea of which profiling is premised – behavior as a reflection of personality – has been the subject of a great deal of misunderstanding, with professionals and nonprofessionals alike questioning whether profiling represents an art or a science and what its function in forensic science should be. To provide a more thorough understanding of criminal profiling’s capabilities and its efficacy as a law enforcement tool, this thesis will examine the application of criminal profiling to investigations, various court rulings concerning profiling’s admissibility, and the role that popular media plays in the perception and function of the practice. It will also discuss how future research and regulatory advancements may strengthen criminal profiling’s scientific merit and legitimacy.

ContributorsGeraghty, Bridget Elizabeth (Author) / Kobojek, Kimberly (Thesis director) / Gruber, Diane (Committee member) / School of International Letters and Cultures (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148034-Thumbnail Image.png
Description

In the past decade, the use of mobile applications, specifically mobile applications focused on improving the health and fitness of users, has increased exponentially. As more consumers look towards mobile health applications to improve their health through dieting, exercise, and weight management, it is important to analyze how the concept

In the past decade, the use of mobile applications, specifically mobile applications focused on improving the health and fitness of users, has increased exponentially. As more consumers look towards mobile health applications to improve their health through dieting, exercise, and weight management, it is important to analyze how the concept of gamification can encourage sustained interaction and approval of these health-focused applications. This thesis aims to understand the prevalence of gamification amongst a large sample of health and fitness applications, identify and code the gamification features used in these apps, and finally, understand how different gamification features relate to the popularity and willingness to advocate using eWOM on behalf of a mobile app.

ContributorsBaugh, Monica (Author) / Dong, Xiaodan (Thesis director) / Montoya, Detra (Committee member) / Department of Marketing (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147978-Thumbnail Image.png
Description

This research analyzes lesbian, gay, bisexual, transgender, and queer/ questioning (LGBTQ) students’ experiences with sex education in Arizona. This research is a grey literature review of Arizona’s previous state policies, current state sex education curricula law, and legislative proposals within the past few years. Analysis focuses on changes after the

This research analyzes lesbian, gay, bisexual, transgender, and queer/ questioning (LGBTQ) students’ experiences with sex education in Arizona. This research is a grey literature review of Arizona’s previous state policies, current state sex education curricula law, and legislative proposals within the past few years. Analysis focuses on changes after the repeal of the “no promo homo” law in 2019. Through defining the differences between abstinence only and comprehensive sex education (CSE), this will provide a framework to better understand approaches to sex education. As of now, Arizona stresses abstinence-based education. Delving into LGBTQ students’ general experiences in schools provides a foundation to better understand why these students especially benefit from CSE. Since LGBTQ students are disproportionately affected by bullying and are at increased sexual health risks, it is important to address misperceptions surrounding the LGBTQ community. The purpose of this research is to push for more LGBTQ inclusive sex education curricula in Arizona.

ContributorsHo, Jacklyn (Author) / Glegziabher, Meskerem (Thesis director) / Ruth, Alissa (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Public Affairs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147992-Thumbnail Image.png
Description

The research presented in this Honors Thesis provides development in machine learning models which predict future states of a system with unknown dynamics, based on observations of the system. Two case studies are presented for (1) a non-conservative pendulum and (2) a differential game dictating a two-car uncontrolled intersection scenario.

The research presented in this Honors Thesis provides development in machine learning models which predict future states of a system with unknown dynamics, based on observations of the system. Two case studies are presented for (1) a non-conservative pendulum and (2) a differential game dictating a two-car uncontrolled intersection scenario. In the paper we investigate how learning architectures can be manipulated for problem specific geometry. The result of this research provides that these problem specific models are valuable for accurate learning and predicting the dynamics of physics systems.<br/><br/>In order to properly model the physics of a real pendulum, modifications were made to a prior architecture which was sufficient in modeling an ideal pendulum. The necessary modifications to the previous network [13] were problem specific and not transferrable to all other non-conservative physics scenarios. The modified architecture successfully models real pendulum dynamics. This case study provides a basis for future research in augmenting the symplectic gradient of a Hamiltonian energy function to provide a generalized, non-conservative physics model.<br/><br/>A problem specific architecture was also utilized to create an accurate model for the two-car intersection case. The Costate Network proved to be an improvement from the previously used Value Network [17]. Note that this comparison is applied lightly due to slight implementation differences. The development of the Costate Network provides a basis for using characteristics to decompose functions and create a simplified learning problem.<br/><br/>This paper is successful in creating new opportunities to develop physics models, in which the sample cases should be used as a guide for modeling other real and pseudo physics. Although the focused models in this paper are not generalizable, it is important to note that these cases provide direction for future research.

ContributorsMerry, Tanner (Author) / Ren, Yi (Thesis director) / Zhang, Wenlong (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148001-Thumbnail Image.png
Description

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many different fields due to its ability to generalize well to different problems and produce computationally efficient, accurate predictions regarding the system of interest. In this thesis, we demonstrate the effectiveness of machine learning models applied to toy cases representative of simplified physics that are relevant to high-entropy alloy simulation. We show these models are effective at learning nonlinear dynamics for single and multi-particle cases and that more work is needed to accurately represent complex cases in which the system dynamics are chaotic. This thesis serves as a demonstration of the potential benefits of machine learning applied to high-entropy alloy simulations to generate fast, accurate predictions of nonlinear dynamics.

ContributorsDaly, John H (Author) / Ren, Yi (Thesis director) / Zhuang, Houlong (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147808-Thumbnail Image.png
Description

The Green Gamers is a start-up concept revolving around incentivizing healthy eating in Arizonan adolescents through the use of reward-based participation campaigns (popularized by conglomerates like Mondelez and Coca-Cola)

ContributorsDavis, Benjamin (Co-author) / Wong, Brendan (Co-author) / Hwan, Kim (Thesis director) / McKearney, John (Committee member) / Department of Finance (Contributor, Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Robots are often used in long-duration scenarios, such as on the surface of Mars,where they may need to adapt to environmental changes. Typically, robots have been built specifically for single tasks, such as moving boxes in a warehouse

Robots are often used in long-duration scenarios, such as on the surface of Mars,where they may need to adapt to environmental changes. Typically, robots have been built specifically for single tasks, such as moving boxes in a warehouse or surveying construction sites. However, there is a modern trend away from human hand-engineering and toward robot learning. To this end, the ideal robot is not engineered,but automatically designed for a specific task. This thesis focuses on robots which learn path-planning algorithms for specific environments. Learning is accomplished via genetic programming. Path-planners are represented as Python code, which is optimized via Pareto evolution. These planners are encouraged to explore curiously and efficiently. This research asks the questions: “How can robots exhibit life-long learning where they adapt to changing environments in a robust way?”, and “How can robots learn to be curious?”.

ContributorsSaldyt, Lucas P (Author) / Ben Amor, Heni (Thesis director) / Pavlic, Theodore (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The Founders lab is a year-long program that gives its students an opportunity to participate in a unique team-based, experiential Barrett honors thesis project to design and apply marketing and sales strategies, as well as business and financial models to start up and launch a new business. This honors thesis

The Founders lab is a year-long program that gives its students an opportunity to participate in a unique team-based, experiential Barrett honors thesis project to design and apply marketing and sales strategies, as well as business and financial models to start up and launch a new business. This honors thesis project focuses on increasing the rate of vaccination outcomes in a country where people are increasingly busy (less time) and unwilling to get a needle through a new business venture that provides a service that brings vaccinations straight to businesses, making them available for their employees. Through our work with the Founders Lab, our team was able to create this pitch deck.

ContributorsZatonskiy, Albert (Co-author) / Hanzlick, Emily (Co-author) / Gomez, Isaias (Co-author) / Byrne, Jared (Thesis director) / Hall, Rick (Committee member) / Silverstein, Taylor (Committee member) / Department of Finance (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148088-Thumbnail Image.png
Description

Colorimetric assays are an important tool in point-of-care testing that offers several advantages to traditional testing methods such as rapid response times and inexpensive costs. A factor that currently limits the portability and accessibility of these assays are methods that can objectively determine the results of these assays. Current solutions

Colorimetric assays are an important tool in point-of-care testing that offers several advantages to traditional testing methods such as rapid response times and inexpensive costs. A factor that currently limits the portability and accessibility of these assays are methods that can objectively determine the results of these assays. Current solutions consist of creating a test reader that standardizes the conditions the strip is under before being measured in some way. However, this increases the cost and decreases the portability of these assays. The focus of this study is to create a machine learning algorithm that can objectively determine results of colorimetric assays under varying conditions. To ensure the flexibility of a model to several types of colorimetric assays, three models were trained on the same convolutional neural network with different datasets. The images these models are trained on consist of positive and negative images of ETG, fentanyl, and HPV Antibodies test strips taken under different lighting and background conditions. A fourth model is trained on an image set composed of all three strip types. The results from these models show it is able to predict positive and negative results to a high level of accuracy.

ContributorsFisher, Rachel (Author) / Blain Christen, Jennifer (Thesis director) / Anderson, Karen (Committee member) / School of Life Sciences (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05