Matching Items (379)
Filtering by

Clear all filters

151351-Thumbnail Image.png
Description
Dealloying induced stress corrosion cracking is particularly relevant in energy conversion systems (both nuclear and fossil fuel) as many failures in alloys such as austenitic stainless steel and nickel-based systems result directly from dealloying. This study provides evidence of the role of unstable dynamic fracture processes in dealloying induced stress-corrosion

Dealloying induced stress corrosion cracking is particularly relevant in energy conversion systems (both nuclear and fossil fuel) as many failures in alloys such as austenitic stainless steel and nickel-based systems result directly from dealloying. This study provides evidence of the role of unstable dynamic fracture processes in dealloying induced stress-corrosion cracking of face-centered cubic alloys. Corrosion of such alloys often results in the formation of a brittle nanoporous layer which we hypothesize serves to nucleate a crack that owing to dynamic effects penetrates into the un-dealloyed parent phase alloy. Thus, since there is essentially a purely mechanical component of cracking, stress corrosion crack propagation rates can be significantly larger than that predicted from electrochemical parameters. The main objective of this work is to examine and test this hypothesis under conditions relevant to stress corrosion cracking. Silver-gold alloys serve as a model system for this study since hydrogen effects can be neglected on a thermodynamic basis, which allows us to focus on a single cracking mechanism. In order to study various aspects of this problem, the dynamic fracture properties of monolithic nanoporous gold (NPG) were examined in air and under electrochemical conditions relevant to stress corrosion cracking. The detailed processes associated with the crack injection phenomenon were also examined by forming dealloyed nanoporous layers of prescribed properties on un-dealloyed parent phase structures and measuring crack penetration distances. Dynamic fracture in monolithic NPG and in crack injection experiments was examined using high-speed (106 frames s-1) digital photography. The tunable set of experimental parameters included the NPG length scale (20-40 nm), thickness of the dealloyed layer (10-3000 nm) and the electrochemical potential (0.5-1.5 V). The results of crack injection experiments were characterized using the dual-beam focused ion beam/scanning electron microscopy. Together these tools allow us to very accurately examine the detailed structure and composition of dealloyed grain boundaries and compare crack injection distances to the depth of dealloying. The results of this work should provide a basis for new mathematical modeling of dealloying induced stress corrosion cracking while providing a sound physical basis for the design of new alloys that may not be susceptible to this form of cracking. Additionally, the obtained results should be of broad interest to researchers interested in the fracture properties of nano-structured materials. The findings will open up new avenues of research apart from any implications the study may have for stress corrosion cracking.
ContributorsSun, Shaofeng (Author) / Sieradzki, Karl (Thesis advisor) / Jiang, Hanqing (Committee member) / Peralta, Pedro (Committee member) / Arizona State University (Publisher)
Created2012
150393-Thumbnail Image.png
Description
ABSTRACT The behavior of the fission products, as they are released from fission events during nuclear reaction, plays an important role in nuclear fuel performance. Fission product release can occur through grain boundary (GB) at low burnups; therefore, this study simulates the mass transport of fission gases in a 2-D

ABSTRACT The behavior of the fission products, as they are released from fission events during nuclear reaction, plays an important role in nuclear fuel performance. Fission product release can occur through grain boundary (GB) at low burnups; therefore, this study simulates the mass transport of fission gases in a 2-D GB network to look into the effects of GB characteristics on this phenomenon, with emphasis on conditions that can lead to percolation. A finite element model was created based on the microstructure of a depleted UO2 sample characterized by Electron Backscattering Diffraction (EBSD). The GBs were categorized into high (D2), low (D1) and bulk diffusivity (Dbulk) based on their misorientation angles and Coincident Site Lattice (CSL) types. The simulation was run using different diffusivity ratios (D2/Dbulk) ranging from 1 to 10^8. The model was set up in three ways: constant temperature case, temperature gradient effects and window methods that mimic the environments in a Light Water Reactor (LWR). In general, the formation of percolation paths was observed at a ratio higher than 10^4 in the measured GB network, which had a 68% fraction of high diffusivity GBs. The presence of temperature gradient created an uneven concentration distribution and decreased the overall mass flux. Finally, radial temperature and fission gas concentration profiles were obtained for a fuel pellet in operation using an approximate 1-D model. The 100 µm long microstructurally explicit model was used to simulate, to the scale of a real UO2 pellet, the mass transport at different radial positions, with boundary conditions obtained from the profiles. Stronger percolation effects were observed at the intermediate and periphery position of the pellet. The results also showed that highest mass flux happens at the edge of a pellet at steady state to accommodate for the sharp concentration drop.
ContributorsLim, Harn Chyi (Author) / Peralta, Pedro (Thesis advisor) / Dey, Sandwip (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2011
150409-Thumbnail Image.png
Description
The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics and structure and surface adsorption. In order to engineer electrochemical systems, no matter the function, requires fundamental intuition of all

The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics and structure and surface adsorption. In order to engineer electrochemical systems, no matter the function, requires fundamental intuition of all the processes at the interface. The following work presents different systems in which the electrode-electrolyte interface is highly important. The first is a charge storage electrode utilizing percolation theory to develop an electrode architecture producing high capacities. This is followed by Zn deposition in an ionic liquid in which the deposition morphology is highly dependant on the charge transfer and surface adsorption at the interface. Electrode Architecture: A three-dimensional manganese oxide supercapacitor electrode architecture is synthesized by leveraging percolation theory to develop a hierarchically designed tri-continuous percolated network. The three percolated phases include a faradaically-active material, electrically conductive material and pore-former templated void space. The micropores create pathways for ionic conductivity, while the nanoscale electrically conducting phase provides both bulk conductivity and local electron transfer with the electrochemically active phase. Zn Electrodeposition: Zn redox in air and water stable N-ethyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide, [C2nmm][NTf2] is presented. Under various conditions, characterization of overpotential, kinetics and diffusion of Zn species and morphological evolution as a function of overpotential and Zn concentration are analyzed. The surface stress evolution during Zn deposition is examined where grain size and texturing play significant rolls in compressive stress generation. Morphological repeatability in the ILs led to a novel study of purity in ionic liquids where it is found that surface adsorption of residual amine and chloride from the organic synthesis affect growth characteristics. The drivers of this work are to understand the processes occurring at the electrode-electrolyte interface and with that knowledge, engineer systems yielding optimal performance. With this in mind, the design of a bulk supercapacitor electrode architecture with excellent composite specific capacitances, as well as develop conditions producing ideal Zn deposition morphologies was completed.
ContributorsEngstrom, Erika (Author) / Friesen, Cody (Thesis advisor) / Buttry, Daniel (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2011
150104-Thumbnail Image.png
Description
A full understanding of material behavior is important for the prediction of residual useful life of aerospace structures via computational modeling. In particular, the influence of rolling-induced anisotropy on fatigue properties has not been studied extensively and it is likely to have a meaningful effect. In this work, fatigue behavior

A full understanding of material behavior is important for the prediction of residual useful life of aerospace structures via computational modeling. In particular, the influence of rolling-induced anisotropy on fatigue properties has not been studied extensively and it is likely to have a meaningful effect. In this work, fatigue behavior of a wrought Al alloy (2024-T351) is studied using notched uniaxial samples with load axes along either the longitudinal or transverse direction, and center notched biaxial samples (cruciforms) with a uniaxial stress state of equivalent amplitude about the bore. Local composition and crystallography were quantified before testing using Energy Dispersive Spectroscopy and Electron Backscattering Diffraction. Interrupted fatigue testing at stresses close to yielding was performed on the samples to nucleate and propagate short cracks and nucleation sites were located and characterized using standard optical and Scanning Electron Microscopy. Results show that crack nucleation occurred due to fractured particles for longitudinal dogbone/cruciform samples; while transverse samples nucleated cracks by debonded and fractured particles. Change in crack nucleation mechanism is attributed to dimensional change of particles with respect to the material axes caused by global anisotropy. Crack nucleation from debonding reduced life till matrix fracture because debonded particles are sharper and generate matrix cracks sooner than their fractured counterparts. Longitudinal samples experienced multisite crack initiation because of reduced cross sectional areas of particles parallel to the loading direction. Conversely the favorable orientation of particles in transverse samples reduced instances of particle fracture eliminating multisite cracking and leading to increased fatigue life. Cyclic tests of cruciform samples showed that crack growth favors longitudinal and transverse directions with few instances of crack growth 45 degrees (diagonal) to the rolling direction. The diagonal crack growth is attributed to stronger influences of local anisotropy on crack nucleation. It was observed that majority of the time crack nucleation is governed by the mixed influences of global and local anisotropies. Measurements of crystal directions parallel to the load on main crack paths revealed directions clustered near the {110} planes and high index directions. This trend is attributed to environmental effects as a result of cyclic testing in air.
ContributorsMakaš, Admir (Author) / Peralta, Pedro D. (Thesis advisor) / Davidson, Joseph K. (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2011
150482-Thumbnail Image.png
Description
This research focuses on the stress and structure evolution observed in-situ during the earliest stages of thin film growth in Cu on Au(111)-reconstruction. For the research, an ultra high vacuum-scanning tunneling microscopy (UHV-STM) system was modified to have the additional capabilities of in-situ deposition and in-situ stress evolution monitoring. The

This research focuses on the stress and structure evolution observed in-situ during the earliest stages of thin film growth in Cu on Au(111)-reconstruction. For the research, an ultra high vacuum-scanning tunneling microscopy (UHV-STM) system was modified to have the additional capabilities of in-situ deposition and in-situ stress evolution monitoring. The design and fabrication processes for the modifications are explained in detail. The deposition source enabled imaging during the deposition of Cu thin films, while also being columnar enough to avoid negatively impacting the function of the microscope. It was found that the stress-induced changes in piezo voltage occurred over a substantially longer time scale and larger piezo scale than used during imaging, allowing for the deconvolution of the two sources of piezo voltage change. The intrinsic stress evolution observed at the onset of Cu growth was tensile in character and reached a maximum of 0.19 N/m at approximately 0.8ML, with an average tensile slope of 1.0GPa. As the film thickness increased beyond 0.8 ML, the stress became less tensile as the observation of disordered stripe and trigon patterns of misfit dislocations began to appear. The transport of atoms from the surface of enlarged Cu islands into the strained layer played an important role in this stage, because they effectively reduce the activation barrier for the formation of the observed surface structures. A rich array of structures were observed in the work presented here including stripe, disordered stripe and trigon patterns co-existing in a single Cu layer. Heteroepitaxial systems in existing literature showed a uniform structure in the single layer. The non-uniform structures in the single layer of this work may be attributed to the room temperature Cu growth, which can kinetically limit uniform pattern formation. The development of the UHV-STM system with additional capabilities for this work is expected to contribute to research for the stress and structure relationships of many other heteroepitaxial systems.
ContributorsNah, Jungwoo (Author) / Friesen, Cody (Thesis advisor) / Sieradzki, Karl (Committee member) / Bennett, Peter (Committee member) / Arizona State University (Publisher)
Created2012
156130-Thumbnail Image.png
Description
Two-dimensional transition metal dichalcogenides (TMDCs) such as

molybdenum disulfide (MoS2), tungsten disulfide (WS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2) are attractive for use in biotechnology, optical and electronics devices due to their promising and tunable electrical, optical and chemical properties. To fulfill the variety of requirements for different applications, chemical

Two-dimensional transition metal dichalcogenides (TMDCs) such as

molybdenum disulfide (MoS2), tungsten disulfide (WS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2) are attractive for use in biotechnology, optical and electronics devices due to their promising and tunable electrical, optical and chemical properties. To fulfill the variety of requirements for different applications, chemical treatment methods are developed to tune their properties. In this dissertation, plasma treatment, chemical doping and functionalization methods have been applied to tune the properties of TMDCs. First, plasma treatment of TMDCs results in doping and generation of defects, as well as the synthesis of transition metal oxides (TMOs) with rolled layers that have increased surface-to-volume ratio and are promising for electrochemical applications. Second, chemical functionalization is another powerful approach for tuning the properties of TMDCs for use in many applications. To covalently functionalize the basal planes of TMDCs, previous reports begin with harsh treatments like lithium intercalation that disrupt the structure and lead to a phase transformation from semiconducting to metallic. Instead, this work demonstrates the direct covalent functionalization of semiconducting MoS2 using aryl diazonium salts without lithium treatments. It preserves the structure and semiconducting nature of MoS2, results in covalent C-S bonds on basal planes and enables different functional groups to be tethered to the MoS2 surface via the diazonium salts. The attachment of fluorescent proteins has been used as a demonstration and it suggests future applications in biology and biosensing. The effects of the covalent functionalization on the electronic transport properties of MoS2 were then studied using field effect transistor (FET) devices.
ContributorsChu, Ximo (Author) / Wang, Qing Hua (Thesis advisor) / Sieradzki, Karl (Committee member) / Green, Alexander (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2018
133382-Thumbnail Image.png
Description
This paper explores how changing the color of chocolate can affect its perceived taste. While color psychology and its effects on food industry marketing are widely studied, this experiment focuses on blue, red, green, and purple striped chocolates. The study conducted for this paper focuses on these four colors based

This paper explores how changing the color of chocolate can affect its perceived taste. While color psychology and its effects on food industry marketing are widely studied, this experiment focuses on blue, red, green, and purple striped chocolates. The study conducted for this paper focuses on these four colors based on their utilization in previously conducted experiments. Each color of chocolate involved 25 participants, for a total of 100 total individuals, who each taste tested one piece and immediately filled out a survey. The survey asked demographic questions, colored chocolate preferences, and questions ranking the chocolate's appeal. While the outcome showed that blue, green, red, and purple was indeed the order of appealing colors, the study results indicate the participants' color preferences did not affect their perceived taste of the chocolate they sampled. Rather, their preference was based on experiences they associated with the color of the chocolate they tasted.
ContributorsChan, Sydney (Author) / Gray, Nancy (Thesis director) / Giard, Jacques (Committee member) / Barrett, The Honors College (Contributor)
Created2018-05
131510-Thumbnail Image.png
Description
Engineering is a multidisciplinary field with a variety of applications. However, since there are so many disciplines of engineering, it is often challenging to find the discipline that best suits an individual interested in engineering. Not knowing which area of engineering most aligns to one’s interests is challenging when deciding

Engineering is a multidisciplinary field with a variety of applications. However, since there are so many disciplines of engineering, it is often challenging to find the discipline that best suits an individual interested in engineering. Not knowing which area of engineering most aligns to one’s interests is challenging when deciding on a major and a career. With the development of the Engineering Interest Quiz (EIQ), the goal was to help individuals find the field of engineering that is most similar to their interests. Initially, an Engineering Faculty Survey (EFS) was created to gather information from engineering faculty at Arizona State University (ASU) and to determine keywords that describe each field of engineering. With this list of keywords, the EIQ was developed. Data from the EIQ compared the engineering students’ top three results for the best engineering discipline for them with their current engineering major of study. The data analysis showed that 70% of the respondents had their major listed as one of the top three results they were given and 30% of the respondents did not have their major listed. Of that 70%, 64% had their current major listed as the highest or tied for the highest percentage and 36% had their major listed as the second or third highest percentage. Furthermore, the EIQ data was compared between genders. Only 33% of the male students had their current major listed as their highest percentage, but 55% had their major as one of their top three results. Women had higher percentages with 63% listing their current major as their highest percentage and 81% listing it in the top three of their final results.
ContributorsWagner, Avery Rose (Co-author) / Lucca, Claudia (Co-author) / Taylor, David (Thesis director) / Miller, Cindy (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131534-Thumbnail Image.png
Description
In the past ten years, the United States’ sound recording industries have experienced significant decreases in employment opportunities for aspiring audio engineers from economic imbalances in the music industry’s digital streaming era and reductions in government funding for career and technical education (CTE). The Recording Industry Association of America reports

In the past ten years, the United States’ sound recording industries have experienced significant decreases in employment opportunities for aspiring audio engineers from economic imbalances in the music industry’s digital streaming era and reductions in government funding for career and technical education (CTE). The Recording Industry Association of America reports promises of music industry sustainability based on increasing annual revenues in paid streaming services and artists’ high creative demand. The rate of new audio engineer entries in the sound recording subsection of the music industry is not viable to support streaming artists’ high demand to engineer new music recordings. Offering CTE programs in secondary education is rare for aspiring engineers with insufficient accessibility to pursue a post-secondary or vocational education because of financial and academic limitations. These aspiring engineers seek alternatives for receiving an informal education in audio engineering on the Internet using video sharing services like YouTube to search for tutorials and improve their engineering skills. The shortage of accessible educational materials on the Internet restricts engineers from advancing their own audio engineering education, reducing opportunities to enter a desperate job market in need of independent, home studio-based engineers. Content creators on YouTube take advantage of this situation and commercialize their own video tutorial series for free and selling paid subscriptions to exclusive content. This is misleading for newer engineers because these tutorials omit important understandings of fundamental engineering concepts. Instead, content creators teach inflexible engineering methodologies that are mostly beneficial to their own way of thinking. Content creators do not often assess the incompatibility of teaching their own methodologies to potential entrants in a profession that demands critical thinking skills requiring applied fundamental audio engineering concepts and techniques. This project analyzes potential solutions to resolve the deficiencies in online audio engineering education and experiments with structuring simple, deliverable, accessible educational content and materials to new entries in audio engineering. Designing clear, easy to follow material to these new entries in audio engineering is essential for developing a strong understanding for the application of fundamental concepts in future engineers’ careers. Approaches to creating and designing educational content requires translating complex engineering concepts through simplified mediums that reduce limitations in learning for future audio engineers.
ContributorsBurns, Triston Connor (Author) / Tobias, Evan (Thesis director) / Libman, Jeff (Committee member) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131538-Thumbnail Image.png
Description
The purpose of this project is to raise awareness for children with social anxiety. As a book directed to children around the age of 12, it will give them a character they can relate to, so they can feel less alone. Throughout the story, the main character experiences symptoms of

The purpose of this project is to raise awareness for children with social anxiety. As a book directed to children around the age of 12, it will give them a character they can relate to, so they can feel less alone. Throughout the story, the main character experiences symptoms of social anxiety and is subject to events that exacerbate those symptoms. Despite her challenges, the main character is able to effectively cope with her social anxiety through her own hard work, and help from her family members, teachers, and peers. The intent is to show children with social anxiety that, contrary to what their disorder makes them feel, they are special and have the capacity to develop skills that are relevant to their talents and interests, and overcome their fears. They should know that parents, teachers, and peers will be there to help and support them and will not judge them as harshly as they suspect. The supporting characters in this story show how a strong support base can influence the success of children with social anxiety. By the end of the story, the main character still has social anxiety, but has gained confidence and her symptoms are less severe. This illustrates that, although social anxiety cannot simply be overcome—that is, it doesn’t go away completely—it can be effectively managed with assistance from close others, and perseverance.
ContributorsDillard, Bethlehem (Author) / Lewis, Stephen (Thesis director) / Gaffney, Cynthia (Committee member) / School of Social and Behavioral Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05