Matching Items (7)
Filtering by

Clear all filters

134292-Thumbnail Image.png
Description
Millions of people every day log onto their computers to play competitive games with others around the world. Each of these players has their own unique personality and their own reasons for playing. To explore the relationship between player personalities and gameplay, this study asked participants to report their Myers-Briggs

Millions of people every day log onto their computers to play competitive games with others around the world. Each of these players has their own unique personality and their own reasons for playing. To explore the relationship between player personalities and gameplay, this study asked participants to report their Myers-Briggs sixteen personality types and complete a survey that asked them questions about their behavior while games playing competitively online including their preferred in-game archetype and questions about how they interact with other players online. The survey also included the Grit Scale test, which which was intended to explore players' perseverance. Nearly 700 people participated in the study and all responses were analyzed based on their Myers-Briggs' personality type. While this study revealed that Myers-Briggs' personality type alone cannot determine a player's mindset while playing online, it was found to be an indicator of how they feel about socializing with others online. The implications of these results are discussed in this paper.
ContributorsKeyvani, Kurosh (Author) / Atkinson, Robert (Thesis director) / Chavez-Echeagaray, Maria Elena (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
136785-Thumbnail Image.png
Description
This paper presents the design and evaluation of a haptic interface for augmenting human-human interpersonal interactions by delivering facial expressions of an interaction partner to an individual who is blind using a visual-to-tactile mapping of facial action units and emotions. Pancake shaftless vibration motors are mounted on the back of

This paper presents the design and evaluation of a haptic interface for augmenting human-human interpersonal interactions by delivering facial expressions of an interaction partner to an individual who is blind using a visual-to-tactile mapping of facial action units and emotions. Pancake shaftless vibration motors are mounted on the back of a chair to provide vibrotactile stimulation in the context of a dyadic (one-on-one) interaction across a table. This work explores the design of spatiotemporal vibration patterns that can be used to convey the basic building blocks of facial movements according to the Facial Action Unit Coding System. A behavioral study was conducted to explore the factors that influence the naturalness of conveying affect using vibrotactile cues.
ContributorsBala, Shantanu (Author) / Panchanathan, Sethuraman (Thesis director) / McDaniel, Troy (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / Department of Psychology (Contributor)
Created2014-05
136604-Thumbnail Image.png
Description
As technology's influence pushes every industry to change, healthcare professionals must move to a more connected model. The nearly ubiquitous presence of smartphones presents a unique opportunity for physicians to collect and process data from their patients more frequently. The Mayo Clinic, in partnership with the Barrett Honors College, has

As technology's influence pushes every industry to change, healthcare professionals must move to a more connected model. The nearly ubiquitous presence of smartphones presents a unique opportunity for physicians to collect and process data from their patients more frequently. The Mayo Clinic, in partnership with the Barrett Honors College, has designed and developed a prototype smartphone application targeting palliative care patients. The application collects symptom data from the patients and presents it to the doctors. This development project serves as a proof-of-concept for the application, and shows how such an application might look and function. Additionally, the project has revealed significant possibilities for the future of the application.
ContributorsGaney, David Howard (Author) / Balasooriya, Janaka (Thesis director) / Lipinski, Christopher (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
135938-Thumbnail Image.png
Description
Palliative care is a field that serves to benefit enormously from the introduction of mobile medical applications. Doctors at the Mayo Clinic intend to address a reoccurring dilemma, in which palliative care patients visit the emergency room during situations that are not urgent or life-threatening. Doing so unnecessarily

Palliative care is a field that serves to benefit enormously from the introduction of mobile medical applications. Doctors at the Mayo Clinic intend to address a reoccurring dilemma, in which palliative care patients visit the emergency room during situations that are not urgent or life-threatening. Doing so unnecessarily drains the hospital’s resources, and it prevents the patient’s physician from applying specialized care that would better suit the patient’s individual needs. This scenario is detrimental to all involved. A mobile medical application seeks to foster doctor-patient communication while simultaneously decreasing the frequency of these excessive E.R. visits. In order to provide a sufficient standard of usefulness and convenience, the design of such a mobile application must be tailored to accommodate the needs of palliative care patients. Palliative care is focused on establishing long-term comfort for people who are often terminally-ill, elderly, handicapped, or otherwise severely disadvantaged. Therefore, a UI intended for palliative care patients must be devoted to simplicity and ease of use. The application must also be robust enough that the user feels that they have been provided with enough capabilities. The majority of this paper is dedicated to overhauling an existing palliative care application, the product of a previous honors thesis project, and implementing a user interface that establishes a simple, positive, and advantageous environment. This is accomplished through techniques such as color-coding, optimizing page layout, increasing customization capabilities, and more. Above all else, this user interface is intended to make the patient’s experience satisfying and trouble-free. They should be able to log in, navigate the application’s features with a few taps of their finger, and log out — all without undergoing any frustration or difficulties.
ContributorsWilkes, Jarrett Matthew (Co-author) / Ganey, David (Co-author) / Dao, Lelan (Co-author) / Balasooriya, Janaka (Thesis director) / Faucon, Christophe (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
Description

Through my work with the Arizona State University Blockchain Research Lab (BRL) and JennyCo, one of the first Healthcare Information (HCI) HIPAA - compliant decentralized exchanges, I have had the opportunity to explore a unique cross-section of some of the most up and coming DLTs including both DAGs and blockchains.

Through my work with the Arizona State University Blockchain Research Lab (BRL) and JennyCo, one of the first Healthcare Information (HCI) HIPAA - compliant decentralized exchanges, I have had the opportunity to explore a unique cross-section of some of the most up and coming DLTs including both DAGs and blockchains. During this research, four major technologies (including JennyCo’s own systems) presented themselves as prime candidates for the comparative analysis of two models for implementing JennyCo’s system architecture for the monetization of healthcare information exchanges (HIEs). These four identified technologies and their underlying mechanisms will be explored thoroughly throughout the course of this paper and are listed with brief definitions as follows: Polygon - “Polygon is a “layer two” or “sidechain” scaling solution that runs alongside the Ethereum blockchain. MATIC is the network’s native cryptocurrency, which is used for fees, staking, and more” [8]. Polygon is the scalable layer involved in the L2SP architecture. Ethereum - “Ethereum is a decentralized blockchain platform that establishes a peer-to-peer network that securely executes and verifies application code, called smart contracts.” [9] This foundational Layer-1 runs thousands of nodes and creates a unique decentralized ecosystem governed by turing complete automated programs. Ethereum is the foundational Layer involved in the L2SP. Constellation - A novel Layer-0 data-centric peer-to-peer network that utilizes the “Hypergraph Transfer Protocol or HGTP, a DLT known as a [DAG] protocol with a novel reputation-based consensus model called Proof of Reputable Observation (PRO). Hypergraph is a feeless decentralized network that supports the transfer of $DAG cryptocurrency.” [10] JennyCo Protocol - Acts as a HIPAA compliant decentralized HIE by allowing consumers, big businesses, and brands to access and exchange user health data on a secure, interoperable, and accessible platform via DLT. The JennyCo Protocol implements utility tokens to reward buyers and sellers for exchanging data. Its protocol nature comes from its DLT implementation which governs the functioning of on-chain actions (e.g. smart contracts). In this case, these actions consist of secure and transparent health data exchange and monetization to reconstitute data ownership to those who generate that data [11]. With the direct experience of working closely with multiple companies behind the technologies listed, I have been exposed to the benefits and deficits of each of these technologies and their corresponding approaches. In this paper, I will use my experience with these technologies and their frameworks to explore two distributed ledger architecture protocols in order to determine the more effective model for implementing JennycCo’s health data exchange. I will begin this paper with an exploration of blockchain and directed acyclic graph (DAG) technologies to better understand their innate architectures and features. I will then move to an in-depth look at layered protocols, and healthcare data in the form of EHRs. Additionally, I will address the main challenges EHRs and HIEs face to present a deeper understanding of the challenges JennyCo is attempting to address. Finally, I will demonstrate my hypothesis: the Hypergraph Transfer Protocol (HGTP) model by Constellation presents significant advantages in scalability, interoperability, and external data security over the Layer-2 Scalability Protocol (L2SP) used by Polygon and Ethereum in implementing the JennyCo protocol. This will be done through a thorough breakdown of each protocol along with an analysis of relevant criteria including but not limited to: security, interoperability, and scalability. In doing so, I hope to determine the best framework for running JennyCo’s HIE Protocol.

ContributorsVan Bussum, Alexander (Author) / Boscovic, Dragan (Thesis director) / Grando, Adela (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05
Description

Consumer automotive vehicles have been an essential part of daily life for many over several decades. Many people also find that the multimedia screens found in the center consoles of many modern vehicles are robust enough to complete a certain number of tasks, such as navigating to a destination, playing

Consumer automotive vehicles have been an essential part of daily life for many over several decades. Many people also find that the multimedia screens found in the center consoles of many modern vehicles are robust enough to complete a certain number of tasks, such as navigating to a destination, playing music, or taking a phone call. As a result, it is important for designers to look into their decisions and how they might affect the overall experience a person has while interacting with multimedia screen as they are driving a vehicle. This study aims to look into how existing design decisions present themselves in the multimedia screens of modern vehicles and which principles of design users favor when interacting with the systems. With 188 participants and three vehicles tested, including the 2019 Toyota Highlander equipped with native software, the 2019 Hyundai Sonata equipped with Android Auto, and the 2020 Hyundai Elantra equipped with Apple CarPlay, it was found that design principles found in Human Computer Interaction, such as Gestalt principles, are relevant in allowing for a more positive, enjoyable experience in completing tasks such as navigation, playing music, and taking a phone call.

ContributorsHwang, Jaesang (Author) / Atkinson, Robert (Thesis director) / Chavez Echeagaray, Maria Elena (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05
Description
Victim advocacy is a free and confidential service provided to individuals who have experienced sexual violence. Due to the intense expectations associated with this role, victim advocates often suffer from mental health issues, including compassion fatigue. Compassion fatigue occurs when individuals in helping professions become overly exposed to clients’ traumatic

Victim advocacy is a free and confidential service provided to individuals who have experienced sexual violence. Due to the intense expectations associated with this role, victim advocates often suffer from mental health issues, including compassion fatigue. Compassion fatigue occurs when individuals in helping professions become overly exposed to clients’ traumatic experiences and suffer from debilitating symptoms that impact their daily lives. Through this project, I identified aspects of the role that put victim advocates at a high risk for developing compassion fatigue. I then explored methods for mitigating the negative effects of compassion fatigue including The Accelerated Recovery Program for compassion fatigue, humor as a coping technique, Eye Movement Desensitizing and Reprocessing therapy, comprehensive training efforts, personal and organizational self-care, and social support. With an emphasis on the benefits provided by social support, I developed a resource guide about the prevalence of violence in our community, aimed to help create more open dialogue surrounding sexual violence.
ContributorsSagarin, Rosa (Author) / Sturgess, Jessica (Thesis director) / Soares, Rebecca (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2024-05