Matching Items (543)
Filtering by

Clear all filters

148001-Thumbnail Image.png
Description

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many different fields due to its ability to generalize well to different problems and produce computationally efficient, accurate predictions regarding the system of interest. In this thesis, we demonstrate the effectiveness of machine learning models applied to toy cases representative of simplified physics that are relevant to high-entropy alloy simulation. We show these models are effective at learning nonlinear dynamics for single and multi-particle cases and that more work is needed to accurately represent complex cases in which the system dynamics are chaotic. This thesis serves as a demonstration of the potential benefits of machine learning applied to high-entropy alloy simulations to generate fast, accurate predictions of nonlinear dynamics.

ContributorsDaly, John H (Author) / Ren, Yi (Thesis director) / Zhuang, Houlong (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147796-Thumbnail Image.png
Description

As much as SARS-CoV-2 has altered the way humans live since the beginning of 2020,<br/>this virus's deadly nature has required clinical testing to meet 2020's demands of higher<br/>throughput, higher accuracy and higher efficiency. Information technology has allowed<br/>institutions, like Arizona State University (ASU), to make strategic and operational changes to<br/>combat the

As much as SARS-CoV-2 has altered the way humans live since the beginning of 2020,<br/>this virus's deadly nature has required clinical testing to meet 2020's demands of higher<br/>throughput, higher accuracy and higher efficiency. Information technology has allowed<br/>institutions, like Arizona State University (ASU), to make strategic and operational changes to<br/>combat the SARS-CoV-2 pandemic. At ASU, information technology was one of the six facets<br/>identified in the ongoing review of the ASU Biodesign Clinical Testing Laboratory (ABCTL)<br/>among business, communications, management/training, law, and clinical analysis. The first<br/>chapter of this manuscript covers the background of clinical laboratory automation and details<br/>the automated laboratory workflow to perform ABCTL’s COVID-19 diagnostic testing. The<br/>second chapter discusses the usability and efficiency of key information technology systems of<br/>the ABCTL. The third chapter explains the role of quality control and data management within<br/>ABCTL’s use of information technology. The fourth chapter highlights the importance of data<br/>modeling and 10 best practices when responding to future public health emergencies.

ContributorsKandan, Mani (Co-author) / Leung, Michael (Co-author) / Woo, Sabrina (Co-author) / Knox, Garrett (Co-author) / Compton, Carolyn (Thesis director) / Dudley, Sean (Committee member) / Computer Science and Engineering Program (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The Covid-19 pandemic has made a significant impact on both the stock market and the<br/>global economy. The resulting volatility in stock prices has provided an opportunity to examine<br/>the Efficient Market Hypothesis. This study aims to gain insights into the efficiency of markets<br/>based on stock price performance in the Covid era.

The Covid-19 pandemic has made a significant impact on both the stock market and the<br/>global economy. The resulting volatility in stock prices has provided an opportunity to examine<br/>the Efficient Market Hypothesis. This study aims to gain insights into the efficiency of markets<br/>based on stock price performance in the Covid era. Specifically, it investigates the market’s<br/>ability to anticipate significant events during the Covid-19 timeline beginning November 1, 2019<br/><br/>and ending March 31, 2021. To examine the efficiency of markets, our team created a Stay-at-<br/>Home Portfolio, experiencing economic tailwinds from the Covid lockdowns, and a Pandemic<br/><br/>Loser Portfolio, experiencing economic headwinds from the Covid lockdowns. Cumulative<br/>returns of each portfolio are benchmarked to the cumulative returns of the S&P 500. The results<br/>showed that the Efficient Market Hypothesis is likely to be valid, although a definitive<br/>conclusion cannot be made based on the scope of the analysis. There are recommendations for<br/>further research surrounding key events that may be able to draw a more direct conclusion.

ContributorsBrock, Matt Ian (Co-author) / Beneduce, Trevor (Co-author) / Craig, Nicko (Co-author) / Hertzel, Michael (Thesis director) / Mindlin, Jeff (Committee member) / Department of Finance (Contributor) / Economics Program in CLAS (Contributor) / WPC Graduate Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The Covid-19 pandemic has made a significant impact on both the stock market and the <br/>global economy. The resulting volatility in stock prices has provided an opportunity to examine <br/>the Efficient Market Hypothesis. This study aims to gain insights into the efficiency of markets <br/>based on stock price performance in

The Covid-19 pandemic has made a significant impact on both the stock market and the <br/>global economy. The resulting volatility in stock prices has provided an opportunity to examine <br/>the Efficient Market Hypothesis. This study aims to gain insights into the efficiency of markets <br/>based on stock price performance in the Covid era. Specifically, it investigates the market’s <br/>ability to anticipate significant events during the Covid-19 timeline beginning November 1, 2019 <br/>and ending March 31, 2021. To examine the efficiency of markets, our team created a Stay-at-Home Portfolio, experiencing economic tailwinds from the Covid lockdowns, and a Pandemic <br/>Loser Portfolio, experiencing economic headwinds from the Covid lockdowns. Cumulative <br/>returns of each portfolio are benchmarked to the cumulative returns of the S&P 500. The results <br/>showed that the Efficient Market Hypothesis is likely to be valid, although a definitive <br/>conclusion cannot be made based on the scope of the analysis. There are recommendations for <br/>further research surrounding key events that may be able to draw a more direct conclusion.

ContributorsCraig, Nicholas (Co-author) / Beneduce, Trevor (Co-author) / Brock, Matt (Co-author) / Hertzel, Michael (Thesis director) / Mindlin, Jeffrey (Committee member) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147804-Thumbnail Image.png
Description

The ongoing Global Coronavirus Pandemic has been upheaving social norms for over a<br/>year at this point. For countless people, our lives look very different at this point in time<br/>then they did before the pandemic began. Quarantine, Shelter in Place, Work from<br/>Home, and Online classes have led global populations to become

The ongoing Global Coronavirus Pandemic has been upheaving social norms for over a<br/>year at this point. For countless people, our lives look very different at this point in time<br/>then they did before the pandemic began. Quarantine, Shelter in Place, Work from<br/>Home, and Online classes have led global populations to become less active leading to<br/>an increase in sedentary lifestyles. The final impact of this consequence is unknown,<br/>but emerging studies have led to concrete evidence of decreased physical and mental<br/>wellbeing, particularly in children. VirusFreeSports was the brainchild of three ASU<br/>Honors students who sought to remedy these devastating consequences by creating<br/>environments where children can participate in sports and exercise safely, free of the<br/>threat COVID-19 or other transmissible illnesses. The ultimate goal for the project team<br/>was to build traction for their idea, which culminated in a video pitch sent to potential<br/>investors. Although largely created as an exercise and we did not create a full<br/>certification course, merely a prototype through a website with sample questions to<br/>gauge interest, the project was a success as a large target market for this product was<br/>identified that showed great promise. Our team believes that early entrance to the<br/>market, as well as the lack of any other competitors would give the team a tremendous<br/>advantage in creating an impactful and influential service.

ContributorsTanveer, Samad (Co-author) / Israel, Natasha (Co-author) / Vrbanac, Matthew (Co-author) / Byrne, Jared (Thesis director) / Lee, Chris (Committee member) / Kunowski, Jeff (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147816-Thumbnail Image.png
Description

Especially during the current COVID-19 pandemic and age of social unrest in the United States, there has been an increasing need for comfort, yet the idea of comfort is quite vague and rarely elaborated upon. To simplify the idea of comfort and communicate the ideas around it effectively, I am

Especially during the current COVID-19 pandemic and age of social unrest in the United States, there has been an increasing need for comfort, yet the idea of comfort is quite vague and rarely elaborated upon. To simplify the idea of comfort and communicate the ideas around it effectively, I am defining comfort as a subset of escapism in which a person escapes to reduce or alleviate feelings of grief or distress. As companies rush to comfort their customers in this current state of uncertainty, marketers are pressed to identify people’s insecurities and comfort them without coming off as insensitive or trite. Current comfort marketing focuses on inspiring nostalgia in its customers, having them recall previous positive experiences or feelings to comfort them. Nostalgic marketing techniques may ease mild grief in some cases, but using them to alleviate severe distress probably will not be as effective, and has contributed to several seemingly out-of-touch “COVID-19 era” commercials.<br/>When addressing comfort, marketers should understand the type and hierarchy of comfort that they are catering to. Not all comforts are equal, in that some comforts make us feel better than others and some do not comfort us at all. A better understanding of how and why comforts change among different individuals, and possibly being able to predict the comfort preference based on a product or service, will help marketers market their goods and services more effectively. By diversifying and specializing comfort marketing using this hierarchical method, marketers will be able to more significantly reach their customers during “uncertain times.”

ContributorsTarpley, Rachel Michelle (Author) / Eaton, John (Thesis director) / Mokwa, Michael (Committee member) / Department of Management and Entrepreneurship (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148061-Thumbnail Image.png
Description

Before the COVID-19 pandemic, there was a great need for United States’ restaurants to “go green” due to consumers’ habits of frequently eating out. Unfortunately, COVID-19 has caused this initiative to lose traction. While the amount of customers ordering takeout has increased, there is less emphasis on sustainability.<br/>Plastic is known

Before the COVID-19 pandemic, there was a great need for United States’ restaurants to “go green” due to consumers’ habits of frequently eating out. Unfortunately, COVID-19 has caused this initiative to lose traction. While the amount of customers ordering takeout has increased, there is less emphasis on sustainability.<br/>Plastic is known for its harmful effects on the environment and the extreme length of time it takes to decompose. According to the International Union for Conservation of Nature (IUCN), almost 8 million tons of plastic end up in the oceans at an annual rate, threatening not only the safety of marine species, but also human health. Modern food packaging materials have included a blend of synthetic ingredients, trickling into our daily lives and polluting the air, water, and land. Single-use plastic items slowly degrade into microplastics and can take up to hundreds of years to biodegrade.<br/>Due to COVID-19, restaurants have switched to takeout and delivery options to adapt to the new business environment and guidelines enforced by the Center of Disease Control (CDC) mandated guidelines.<br/>Some of these guidelines include: notices encouraging social distancing and mask-wearing, mandated masks for employees, and easy access to sanitary supplies.<br/>This cultural shift is motivating restaurants to search for a quick, cheap, and easy fix to adapt to the increased demand of take-out and delivery methods. This increases their plastic consumption of items such as plastic bags/paper bags, styrofoam containers, and beverage cups. Plastic is the most popular takeout material because of its price and durability as well as allowing for limited contamination and easy disposability.<br/>Almost all food products come in packaging and this, more often than not, is single use. Food is the largest market out of all the packaging industry, maintaining roughly two thirds of material going to food. The US Environmental Protection Agency reports that almost half of all municipal solid waste is made up of food and food packaging materials. In 2014, over 162 million tons of packaging material waste was generated in the states. This typically contains toxic inks and dyes that leach into groundwater and soil. When degrading, pieces of plastic absorb toxins like PCBs and pesticides, and then each piece will in turn release toxic chemicals like Bisphenol A. Even before being thrown away, it causes negative effects for the environment. The creation of packaging materials uses many resources such as petroleum and chemicals and then releases toxic byproducts. Such byproducts include sludge containing contaminants, greenhouse gases, and heavy metal and particulate matter emissions. Unlike many other industries, plastic manufacturing has actually increased production. Demand has increased and especially in the food industry to keep things sanitary. This increase in production is reflective of the increase in waste. <br/>Although restaurants have implemented their own sustainable initiatives to combat their carbon footprint, the pandemic has unfortunately forced restaurants to digress. For example, Just Salad, a fast food restaurant chain, incentivized customers with discounted meals to use reusable bowls which saved over 75,000 pounds of plastic per year. However, when the pandemic hit, the company halted the program to pivot towards takeout and delivery. This effect is apparent on an international scale. Singapore was in lock-down for eight weeks and during that time, 1,470 tons of takeout and food delivery plastic waste was thrown out. In addition, the Hong Kong environmental group Greeners Action surveyed 2,000 people in April and the results showed that people are ordering out twice as much as last year, doubling the use of plastic.<br/>However, is this surge of plastic usage necessary in the food industry or are there methods that can be used to reduce the amount of waste production? The COVID-19 pandemic caused a fracture in the food system’s supply chain, involving food, factory, and farm. This thesis will strive to tackle such topics by analyzing the supply chains of the food industry and identify areas for sustainable opportunities. These recommendations will help to identify areas for green improvement.

ContributorsTao, Adlar Z (Co-author) / Vargas, Cassandra (Co-author) / Deng, Aretha (Co-author) / Printezis, Antonios (Thesis director) / Konopka, John (Committee member) / Department of Supply Chain Management (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148065-Thumbnail Image.png
Description

Self-efficacy in engineering, engineering identity, and coping in engineering have been shown in previous studies to be highly important in the advancement of one’s development in the field of engineering. Through the creation and deployment of a 17 question survey, undergraduate and first year masters students were asked to provide

Self-efficacy in engineering, engineering identity, and coping in engineering have been shown in previous studies to be highly important in the advancement of one’s development in the field of engineering. Through the creation and deployment of a 17 question survey, undergraduate and first year masters students were asked to provide information on their engagement at their university, their demographic information, and to rank their level of agreement with 22 statements relating to the aforementioned ideas. Using the results from the collected data, exploratory factor analysis was completed to identify the factors that existed and any correlations. No statistically significant correlations between the identified three factors and demographic or engagement information were found. There needs to be a significant increase in the data sample size for statistically significant results to be found. Additionally, there is future work needed in the creation of an engagement measure that successfully reflects the level and impact of participation in engineering activities beyond traditional coursework.

ContributorsJones, Elizabeth Michelle (Author) / Ganesh, Tirupalavanam (Thesis director) / Graham, Kaely (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148079-Thumbnail Image.png
Description

In mid-March of 2020, Arizona State University transformed one of its research labs into ASU Biodesign Clinical Testing Laboratory (ABCTL) to meet the testing needs of the surrounding community during the COVID-19 pandemic. The lab uses RT-qPCR, or reverse transcription polymerase chain reaction, to match the components of a biosample

In mid-March of 2020, Arizona State University transformed one of its research labs into ASU Biodesign Clinical Testing Laboratory (ABCTL) to meet the testing needs of the surrounding community during the COVID-19 pandemic. The lab uses RT-qPCR, or reverse transcription polymerase chain reaction, to match the components of a biosample to a portion of the SARS-CoV-2 genome. The ABCTL uses the TaqPath™ COVID-19 Combo Kit, which has undergone many different types of efficacy and efficiency tests and can successfully denote saliva samples as positive even when an individual is infected with various emerging strains of the SARS-CoV-2. Samples are collected by volunteers at testing sites with stringent biosafety precautions and processed in the lab using specific guidelines. As the pandemic eventually becomes less demanding, the ABCTL plans to utilize the Devil’s Drop-off program at various school districts around Arizona to increase testing availability, transfer to the SalivaDirect method, and provide other forms of pathogen testing to distinguish COVID-19 from other types of infections in the ASU community.

ContributorsAnderson, Laura (Co-author) / Ruan, Ellen (Co-author) / Smetanick, Jennifer (Co-author) / Majhail, Kajol (Co-author) / Breshears, Scott (Co-author) / Compton, Carolyn (Thesis director) / Magee, Dewey (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148090-Thumbnail Image.png
Description

Before the COVID-19 pandemic, there was a great need for United States’ restaurants to “go green” due to consumers’ habits of frequently eating out. Unfortunately, COVID-19 has caused this initiative to lose traction. While the amount of customers ordering takeout has increased, there is less emphasis on sustainability.<br/>Plastic is known

Before the COVID-19 pandemic, there was a great need for United States’ restaurants to “go green” due to consumers’ habits of frequently eating out. Unfortunately, COVID-19 has caused this initiative to lose traction. While the amount of customers ordering takeout has increased, there is less emphasis on sustainability.<br/>Plastic is known for its harmful effects on the environment and the extreme length of time it takes to decompose. According to the International Union for Conservation of Nature (IUCN), almost 8 million tons of plastic end up in the oceans at an annual rate, threatening not only the safety of marine species, but also human health. Modern food packaging materials have included a blend of synthetic ingredients, trickling into our daily lives and polluting the air, water, and land. Single-use plastic items slowly degrade into microplastics and can take up to hundreds of years to biodegrade.<br/>Due to COVID-19, restaurants have switched to takeout and delivery options to adapt to the new business environment and guidelines enforced by the Center of Disease Control (CDC) mandated guidelines.<br/>Some of these guidelines include: notices encouraging social distancing and mask-wearing, mandated masks for employees, and easy access to sanitary supplies.<br/>This cultural shift is motivating restaurants to search for a quick, cheap, and easy fix to adapt to the increased demand of take-out and delivery methods. This increases their plastic consumption of items such as plastic bags/paper bags, styrofoam containers, and beverage cups. Plastic is the most popular takeout material because of its price and durability as well as allowing for limited contamination and easy disposability.<br/>Almost all food products come in packaging and this, more often than not, is single use. Food is the largest market out of all the packaging industry, maintaining roughly two thirds of material going to food. The US Environmental Protection Agency reports that almost half of all municipal solid waste is made up of food and food packaging materials. In 2014, over 162 million tons of packaging material waste were generated in the states. This typically contains toxic inks and dyes that leach into groundwater and soil. When degrading, pieces of plastic absorb toxins like PCBs and pesticides, and then each piece will in turn release toxic chemicals like Bisphenol A. Even before being thrown away, it causes negative effects for the environment. The creation of packaging materials uses many resources such as petroleum and chemicals and then releases toxic byproducts. Such byproducts include sludge containing contaminants, greenhouse gases, and heavy metal and particulate matter emissions. Unlike many other industries, plastic manufacturing has actually increased production. Demand has increased and especially in the food industry to keep things sanitary. This increase in production is reflective of the increase in waste. <br/>Although restaurants have implemented their own sustainable initiatives to combat their carbon footprint, the pandemic has unfortunately forced restaurants to digress. For example, Just Salad, a fast-food restaurant chain, incentivized customers with discounted meals to use reusable bowls which saved over 75,000 pounds of plastic per year. However, when the pandemic hit, the company halted the program to pivot towards takeout and delivery. This effect is apparent on an international scale. Singapore was in lock-down for eight weeks and during that time, 1,470 tons of takeout and food delivery plastic waste was thrown out. In addition, the Hong Kong environmental group Greeners Action surveyed 2,000 people in April and the results showed that people are ordering out twice as much as last year, doubling the use of plastic.<br/>However, is this surge of plastic usage necessary in the food industry, or are there methods that can be used to reduce the amount of waste production? The COVID-19 pandemic caused a fracture in the food system’s supply chain, involving food, factory, and farm. This thesis will strive to tackle such topics by analyzing the supply chains of the food industry and identify areas for sustainable opportunities. These recommendations will help to identify areas for green improvement.

ContributorsVargas, Cassandra (Author) / Printezis, Antonios (Thesis director) / Konopka, John (Committee member) / Department of Information Systems (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05