Matching Items (4)
Filtering by

Clear all filters

141388-Thumbnail Image.png
Description

In this study we characterized the relationship between temperature and mortality in central Arizona desert cities that have an extremely hot climate. Relationships between daily maximum apparent temperature (ATmax) and mortality for eight condition-specific causes and all-cause deaths were modeled for all residents and separately for males and females ages

In this study we characterized the relationship between temperature and mortality in central Arizona desert cities that have an extremely hot climate. Relationships between daily maximum apparent temperature (ATmax) and mortality for eight condition-specific causes and all-cause deaths were modeled for all residents and separately for males and females ages <65 and ≥65 during the months May–October for years 2000–2008. The most robust relationship was between ATmax on day of death and mortality from direct exposure to high environmental heat. For this condition-specific cause of death, the heat thresholds in all gender and age groups (ATmax = 90–97 °F; 32.2‒36.1 °C) were below local median seasonal temperatures in the study period (ATmax = 99.5 °F; 37.5 °C). Heat threshold was defined as ATmax at which the mortality ratio begins an exponential upward trend. Thresholds were identified in younger and older females for cardiac disease/stroke mortality (ATmax = 106 and 108 °F; 41.1 and 42.2 °C) with a one-day lag. Thresholds were also identified for mortality from respiratory diseases in older people (ATmax = 109 °F; 42.8 °C) and for all-cause mortality in females (ATmax = 107 °F; 41.7 °C) and males <65 years (ATmax = 102 °F; 38.9 °C). Heat-related mortality in a region that has already made some adaptations to predictable periods of extremely high temperatures suggests that more extensive and targeted heat-adaptation plans for climate change are needed in cities worldwide.

ContributorsHarlan, Sharon L. (Author) / Chowell, Gerardo (Author) / Yang, Shuo (Author) / Petitti, Diana B. (Author) / Morales Butler, Emmanuel J. (Author) / Ruddell, Benjamin L. (Author) / Ruddell, Darren M. (Author)
Created2014-05-20
Description

Recovery from exercise has become an evolving aspect of all sports performance. Increased research has led numerous individuals to understand and utilize the modalities that have become available. Methods such as Cold Water Immersion (CWI), Contrast Water Therapy (CWT), and Hot Water Immersion (HWI) are some of the modalities growing

Recovery from exercise has become an evolving aspect of all sports performance. Increased research has led numerous individuals to understand and utilize the modalities that have become available. Methods such as Cold Water Immersion (CWI), Contrast Water Therapy (CWT), and Hot Water Immersion (HWI) are some of the modalities growing in popularity as well as utilization by athletes across all sports. This paper aims to examine and analyze evidence across several research journals that evaluate the effectiveness and also application of these recovery methods. Cold and heat exposures on the body can have a drastic positive impact on athletic performance. However, without the correct knowledge and guidance, these methods can augment, mitigate, and even diminish the effects of adaptation and exercise. This thesis aims to examine research journals and extract specific practices based on empirical evidence. This is to form proper deliverables and protocols for athletes to use for ideal adaptations and recovery for performance.

ContributorsHouse, Grant (Author) / Levinson, Simin (Thesis director) / Behm, Herbert (Committee member) / Vezina, Jesse (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor) / Sandra Day O'Connor College of Law (Contributor)
Created2022-05
165388-Thumbnail Image.png
ContributorsHouse, Grant (Author) / Levinson, Simin (Thesis director) / Behm, Herbert (Committee member) / Vezina, Jesse (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2022-05