Matching Items (20)
Filtering by

Clear all filters

137696-Thumbnail Image.png
Description
City managers and policy makers are increasing looking to environmental systems to provide beneficial services for urban systems. Constructed wetland systems (CWS), highly managed and designed wetland ecosystems, are being utilized to remove pollution, particularly excess nitrogen (N), from treated wastewater. Various wetland process remove N from effluent, such as

City managers and policy makers are increasing looking to environmental systems to provide beneficial services for urban systems. Constructed wetland systems (CWS), highly managed and designed wetland ecosystems, are being utilized to remove pollution, particularly excess nitrogen (N), from treated wastewater. Various wetland process remove N from effluent, such as denitrification, direct plant uptake, and soil accumulation. Emergent macrophytes provide direct uptake of N and improve conditions for microbially-mediated N processing. The role of different macrophytes species, however, is less understood and has primarily been examined in mesocosm and microcosm experiments and in mesic environments. I examined the effects of community composition on N removal and processing at the whole ecosystem scale in an aridland, constructed wetland (42 ha) through: 1) quantifying above- and belowground biomass and community composition from July 2011 \u2014 November 2012 using a non-destructive allometric technique, and; 2) quantifying macrophyte N content and direct macrophyte N uptake over the 2012 growing season. Average peak biomass in July 2011 & 2012 was 2,930 g dw/m2 and 2,340 g dw/m2, respectively. Typha spp. (Typha domingensis and Typha latifolia) comprised the majority (approximately 2/3) of live aboveground biomass throughout the sampling period. No statistically significant differences were observed in macrophyte N content among the six species present, with an overall average of 1.68% N in aboveground tissues and 1.29% N in belowground tissues. Per unit area of wetland, Typha spp. retained the most N (22 g/m2); total N retained by all species was 34 g/m2. System-wide direct plant N uptake was markedly lower than N input to the system and thus represented a small portion of system N processing. Soil accumulation of N also played a minor role, leaving denitrification as the likely process responsible for the majority of system N processing. Based on a literature review, macrophyte species composition likely influences denitrification through oxygen diffusion into soils and through the quality and quantity of carbon in leaf litter. While this study and the literature indicates Typha spp. may be the best species to promote wetland N processing, other considerations (e.g., bird habitat) and conditions (e.g., type of wastewater being treated) likely make mixed stands of macrophytes preferable in many applications. Additionally, this study demonstrated the importance of urban wetlands as scientific laboratories for scientists of all ages and as excellent stepping-off points for experiments of science-policy discourse.
ContributorsWeller, Nicholas Anton (Author) / Daniel L., Childers (Thesis director) / Grimm, Nancy (Committee member) / Turnbull, Laura (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Public Affairs (Contributor) / Graduate College (Contributor)
Created2013-05
136332-Thumbnail Image.png
Description
South Mountain is the largest municipal park in the nation. It is a bundled amenity, providing a series of linked services to the surrounding communities. A dataset of 19,209 homes in 155 neighborhoods within three miles of the park was utilized in order to complete a hedonic estimation for two

South Mountain is the largest municipal park in the nation. It is a bundled amenity, providing a series of linked services to the surrounding communities. A dataset of 19,209 homes in 155 neighborhoods within three miles of the park was utilized in order to complete a hedonic estimation for two nearby urban villages, Ahwatukee Foothills and South Mountain Village. Measures of access include proximity to the park, trailhead access, and adjacency to the park. Two regressions were estimated, the first including lot characteristics and subdivision fixed effects and the second using the coefficients for each subdivision as the dependent variable. These estimates describe how the location of a house in a subdivision contributes to its conditional mean price. As a result they offer a direct basis for capturing amenities measured at the neighborhood scale on home values. Park proximity, trailhead access and adjacency were found to significantly influence the price of homes at the 5% confidence level in Ahwatukee, but not in South Mountain Village. The results of this study can be applied to issues of environmental justice and park access in determining which areas and attributes of the park are associated with a high premium. Though South Mountain was preserved some time ago, development and future preservation in the City of Phoenix can be informed by such studies.
ContributorsRamakrishna, Saritha Kambhampati (Author) / Abbott, Joshua (Thesis director) / Smith, V. Kerry (Committee member) / Schoon, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Economics Program in CLAS (Contributor) / Department of English (Contributor)
Created2015-05
136930-Thumbnail Image.png
Description
Community gardens are used worldwide to promote sustainable, urban living. They can be used to improve the physical, mental, emotional, and social health of the gardeners and volunteers who utilize their grounds. The gardens may also have a positive impact on the local environment and wider community. This study examines

Community gardens are used worldwide to promote sustainable, urban living. They can be used to improve the physical, mental, emotional, and social health of the gardeners and volunteers who utilize their grounds. The gardens may also have a positive impact on the local environment and wider community. This study examines a community garden seeking to expand its involvement in the local neighborhood and searching for ways to include local residents in garden related activities. To this end, the garden was waiting for approval on their non-profit, 501(c)3 status, and was seeking additional data on local residents and perceptions of the garden's activities. This thesis first reviews the literature on the benefits community gardens provide for the individuals living in their communities and their impact on urban development. The thesis then turns to an analysis of one garden, Mesa Urban Garden, rooted in the Downtown District of Mesa, Arizona, and how they are impacting their neighborhood and how garden organizers can respond in new and creative ways to local residents.
ContributorsBooher, Samantha Rose (Author) / Glick, Jennifer (Thesis director) / Dumka, Larry (Committee member) / Barrett, The Honors College (Contributor) / Hugh Downs School of Human Communication (Contributor) / School of Sustainability (Contributor)
Created2014-05
136951-Thumbnail Image.png
Description
Community gardens are used worldwide to promote sustainable, urban living. They can be used to improve the physical, mental, emotional, and social health of the gardeners and volunteers who utilize their grounds. The gardens may also have a positive impact on the local environment and wider community. This study examines

Community gardens are used worldwide to promote sustainable, urban living. They can be used to improve the physical, mental, emotional, and social health of the gardeners and volunteers who utilize their grounds. The gardens may also have a positive impact on the local environment and wider community. This study examines a community garden seeking to expand its involvement in the local neighborhood and searching for ways to include local residents in garden related activities. To this end, the garden was waiting for approval on their non-profit, 501(c)3 status, and was seeking additional data on local residents and perceptions of the garden's activities. This thesis first reviews the literature on the benefits community gardens provide for the individuals living in their communities and their impact on urban development. The thesis then turns to an analysis of one garden, Mesa Urban Garden, rooted in the Downtown District of Mesa, Arizona, and how they are impacting their neighborhood and how garden organizers can respond in new and creative ways to local residents.
ContributorsBooher, Samantha Rose (Author) / Glick, Jennifer (Thesis director) / Dumka, Larry (Committee member) / Barrett, The Honors College (Contributor) / Hugh Downs School of Human Communication (Contributor) / School of Sustainability (Contributor)
Created2014-05
135715-Thumbnail Image.png
Description
This thesis looks at the theory and empirical evidence that surrounds the debate between environmentalists and economists regarding the link between trade liberalization and environmental degradation. The main points of the theory are the scale, composition, and technique effects which, when aggregated, are ambiguous as the harm or benefit of

This thesis looks at the theory and empirical evidence that surrounds the debate between environmentalists and economists regarding the link between trade liberalization and environmental degradation. The main points of the theory are the scale, composition, and technique effects which, when aggregated, are ambiguous as the harm or benefit of trade's effect on the environment. The empirical evidence studied ranges in time periods from the early 1990s to 2011 and mainly focuses on the existence or absence of an environmental Kuznets curve for certain pollutant. However, the data still proves to be inconclusive. The debate about the possible link between trade and the environment is as important as ever, especially in regards to carbon dioxide emissions. Going forward, it is extremely important that international cooperation regarding emissions targets and abatement goals increases. Trade will prove to be an invaluable tool in this endeavor as it provides a mechanism for the spread of green technology as well as can be used as a method of environmental policy enforcement.
ContributorsCotterell, Emily Claire (Author) / Mendez, Jose (Thesis director) / McDaniel, Cara (Committee member) / School of Sustainability (Contributor) / Department of Economics (Contributor) / Department of Supply Chain Management (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
132677-Thumbnail Image.png
Description
This paper analyzes responses to a survey using a modified fourfold pattern of preference to determine if implicit information, once made explicit, is practically significant in nudging irrational decision makers towards more rational decisions. Respondents chose between two scenarios and an option for indifference for each of the four questions

This paper analyzes responses to a survey using a modified fourfold pattern of preference to determine if implicit information, once made explicit, is practically significant in nudging irrational decision makers towards more rational decisions. Respondents chose between two scenarios and an option for indifference for each of the four questions from the fourfold pattern with expected value being implicit information. Then respondents were asked familiarity with expected value and given the same four questions again but with the expected value for each scenario then explicitly given. Respondents were asked to give feedback if their answers had changed and if the addition of the explicit information was the reason for that change. Results found the addition of the explicit information in the form of expected value to be practically significant with ~90% of respondents who changed their answers giving that for the reason. In the implicit section of the survey, three out of four of the questions had a response majority of lower expected value answers given compared to the alternative. In the explicit section of the survey, all four questions achieved a response majority of higher expected value answers given compared to the alternative. In moving from the implicit to the explicit section, for each question, the scenario with lower expected value experienced a decrease in percentage of responses, and the scenario with higher expected value and indifference between the scenarios both experienced an increase in percentage of responses.
ContributorsJohnson, Matthew (Author) / Goegan, Brian (Thesis director) / Foster, William (Committee member) / School of Sustainability (Contributor) / Economics Program in CLAS (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132784-Thumbnail Image.png
Description

The rise in urban populations is encouraging cities to pursue sustainable water treatment services implementing constructed treatment wetlands (CTW). This is especially important in arid climates where water resources are scarce; however, research regarding aridland CTWs is limited. The Tres Rios CTW in Phoenix, Arizona, USA, presents the tradeoff between

The rise in urban populations is encouraging cities to pursue sustainable water treatment services implementing constructed treatment wetlands (CTW). This is especially important in arid climates where water resources are scarce; however, research regarding aridland CTWs is limited. The Tres Rios CTW in Phoenix, Arizona, USA, presents the tradeoff between greater water loss and enhanced nitrogen (N) removal. Previous research has suggested that water loss due to transpiration is replaced by a phenomenon termed the Biological Tide. This trend has been documented since 2011 by combining transpiration values with a nitrogen budget. Calculations were made at both the marsh and whole-system scale. The purpose of this paper is to demonstrate how the Biological Tide enhances N uptake throughout the CTW. Results indicate that about half of the nitrogen taken up by the vegetated marsh is associated with new water entering the marsh via the Biological Tide with even higher values during warmer months. Furthermore, it is this phenomenon that enhances N uptake throughout the year, on average, by 25.9% for nitrite, 9.54% for nitrate, and 4.84% for ammonium at the whole-system scale and 95.5%, 147%, and 118% within the marsh. This paper demonstrates the Biological Tide’s significant impact on enhanced N removal in an aridland CTW.

ContributorsTreese, Sawyer Matthew (Author) / Childers, Daniel L. (Thesis director) / Grimm, Nancy (Committee member) / School of Geographical Sciences and Urban Planning (Contributor) / School of Sustainability (Contributor) / School of Public Affairs (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
This honors thesis is focused on two separate catalysis projects conducted under the mentorship of Dr. Javier Pérez-Ramírez at ETH Zürich. The first project explored ethylene oxychlorination over supported europium oxychloride catalysts. The second project investigated alkyne semihydrogenation over nickel phosphide catalysts. This work is the subject of a publication

This honors thesis is focused on two separate catalysis projects conducted under the mentorship of Dr. Javier Pérez-Ramírez at ETH Zürich. The first project explored ethylene oxychlorination over supported europium oxychloride catalysts. The second project investigated alkyne semihydrogenation over nickel phosphide catalysts. This work is the subject of a publication of which I am a co-author, as cited below.

Project 1 Abstract: Ethylene Oxychlorination
The current two-step process for the industrial process of vinyl chloride production involves CuCl2 catalyzed ethylene oxychlorination to ethylene dichloride followed by thermal cracking of the latter to vinyl chloride. To date, no industrial application of a one-step process is available. To close this gap, this work evaluates a wide range of self-prepared supported CeO2 and EuOCl catalysts for one-step production of vinyl chloride from ethylene in a fixed-bed reactor at 623 773 K and 1 bar using feed ratios of C2H4:HCl:O2:Ar:He = 3:3 6:1.5 6:3:82 89.5. Among all studied systems, CeO2/ZrO2 and CeO2/Zeolite MS show the highest activity but suffer from severe combustion of ethylene, forming COx, while 20 wt.% EuOCl/γ-Al2O3 leads to the best vinyl chloride selectivity of 87% at 15.6% C2H4 conversion with complete suppression of CO2 formation and only 4% selectivity to CO conversion for over 100 h on stream. Characterization by XRD and EDX mapping reveals that much of the Eu is present in non-active phases such as Al2Eu or EuAl4, indicating that alternative synthesis methods could be employed to better utilize the metal. A linear relationship between conversion and metal loading is found for this catalyst, indicating that always part of the used Eu is available as EuOCl, while the rest forms inactive europium aluminate species. Zeolite-supported EuOCl slightly outperforms EuOCl/γ Al2O3 in terms of total yield, but is prone to significant coking and is unstable. Even though a lot of Eu seems locked in inactive species on EuOCl/γ Al2O3, these results indicate possible savings of nearly 16,000 USD per kg of catalyst compared to a bulk EuOCl catalyst. These very promising findings constitute a crucial step for process intensification of polyvinyl chloride production and exploring the potential of supported EuOCl catalysts in industrially-relevant reactions.

Project 2 Abstract: Alkyne Semihydrogenation
Despite strongly suffering from poor noble metal utilization and a highly toxic selectivity modifier (Pb), the archetypal catalyst applied for the three-phase alkyne semihydrogenation, the Pb-doped Pd/CaCO3 (Lindlar catalyst), is still being utilized at industrial level. Inspired by the very recent strategies involving the modification of Pd with p-block elements (i.e., S), this work extrapolates the concept by preparing crystalline metal phosphides with controlled stoichiometry. To develop an affordable and environmentally-friendly alternative to traditional hydrogenation catalysts, nickel, a metal belonging to the same group as Pd and capable of splitting molecular hydrogen has been selected. Herein, a simple two-step synthesis procedure involving nontoxic precursors was used to synthesize bulk nickel phosphides with different stoichiometries (Ni2P, Ni5P4, and Ni12P5) by controlling the P:Ni ratios. To uncover structural and surface features, this catalyst family is characterized with an array of methods including X-ray diffraction (XRD), 31P magic-angle nuclear magnetic resonance (MAS-NMR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Bulk-sensitive techniques prove the successful preparation of pure phases while XPS analysis unravels the facile passivation occurring at the NixPy surface that persists even after reductive treatment. To assess the characteristic surface fingerprints of these materials, Ar sputtering was carried out at different penetration depths, reveling the presence of Ni+ and P-species. Continuous-flow three-phase hydrogenations of short-chain acetylenic compounds display that the oxidized layer covering the surface is reduced under reaction conditions, as evidenced by the induction period before reaching the steady state performance. To assess the impact of the phosphidation treatment on catalytic performance, the catalysts were benchmarked against a commercial Ni/SiO2-Al2O3 sample. While Ni/SiO2-Al2O3 presents very low selectivity to the alkene (the selectivity is about 10% at full conversion) attributed to the well-known tendency of naked nickel nanoparticles to form hydrides, the performance of nickel phosphides is highly selective and independent of P:Ni ratio. In line with previous findings on PdxS, kinetic tests indicate the occurrence of a dual-site mechanism where the alkyne and hydrogen do not compete for the same site.

This work is the subject of a publication of which I am a co-author, as cited below.

D. Albani; K. Karajovic; B. Tata; Q. Li; S. Mitchell; N. López; J. Pérez-Ramírez. Ensemble Design in Nickel Phosphide Catalysts for Alkyne Semi-Hydrogenation. ChemCatChem 2019. doi.org/10.1002/cctc.201801430
ContributorsTata, Bharath (Author) / Deng, Shuguang (Thesis director) / Muhich, Christopher (Committee member) / Chemical Engineering Program (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131264-Thumbnail Image.png
Description
Freshwater ecosystems are increasingly threatened by anthropogenic eutrophication (Kolzau et al., 2014) and require mitigation efforts to prevent oxygen depletion and subsequent biodiversity loss. Tres Rios Constructed Treatment Wetland (CTW) relies on wetland ecosystem functioning to reduce nutrient concentrations in order to meet regulatory guidelines. I investigated the impact of

Freshwater ecosystems are increasingly threatened by anthropogenic eutrophication (Kolzau et al., 2014) and require mitigation efforts to prevent oxygen depletion and subsequent biodiversity loss. Tres Rios Constructed Treatment Wetland (CTW) relies on wetland ecosystem functioning to reduce nutrient concentrations in order to meet regulatory guidelines. I investigated the impact of solar irradiance, temperature, and nutrient availability on aquatic net primary productivity, ecosystem respiration, and nutrient cycling using statistical analysis and quantitative modeling informed by field data generated by ASU’s Wetland Ecosystem Ecology Lab (WEEL) in partnership with the City of Phoenix Water Services Department. I found that the extent of daily solar insolation controls Aquatic Net Primary Productivity (ANPP) rates and the seasonal aquatic nutrient processing capacity of Tres Rios, resulting in the following approximate relationship: ANPP = 0.001344(W/m²) - 0.32634 (r² = 0.259; p = 0.005).

This formula was used to estimate the nutrient uptake performance of aquatic primary producers from sampling observations; ANPP accounted for 16.26 metric tons of system wide N uptake, while aquatic ER contributed 6.07 metric tons N of nighttime remineralization and 5.7 metric tons of N throughout the water column during the day. The estimated yearly net aquatic N flux is 4.49 metric tons uptake, compared to about 12 metric tons yearly N uptake by the vegetated marsh (Treese, 2019). However, not accounting for animal respiration results in an underestimation of system-wide N remineralization, and not accounting for soil processes results in an underestimation of N uptake.
ContributorsEvans, Joseph Barrett (Author) / Childers, Daniel (Thesis director) / Hartnett, Hilairy (Committee member) / Watts College of Public Service & Community Solut (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133618-Thumbnail Image.png
Description
Is nuclear power sustainable when compared to other energy sources? A truly sustainable energy source provides an environmental benefit, minimizes costs to consumers both socially and economically, and continues to do so in both the short and the long term. Taking the zero-carbon nature of nuclear generation as its net

Is nuclear power sustainable when compared to other energy sources? A truly sustainable energy source provides an environmental benefit, minimizes costs to consumers both socially and economically, and continues to do so in both the short and the long term. Taking the zero-carbon nature of nuclear generation as its net environmental benefit, this paper the evaluates the economic and social costs of nuclear power to determine if nuclear power's reputation as "unsustainable" is warranted. The sustainability of nuclear power is evaluated in two main categories. The first part focuses on the economics of nuclear power. There are many preconceived notions regarding nuclear power and its associated industry. This section addresses those notions to determine their validity given recent data. The prevalent types of nuclear plants across the U.S., the economics of the stages of nuclear energy production, and its competitiveness relative to other energy sources are addressed, culminating in an evaluation of its modern economic attractiveness as well as its future economic viability. A sustainability assessment would not be complete without addressing the social costs of an energy source, as a sustainable source must be both economically and socially viable. If it can be established that nuclear power can provide energy at lower rates and at a lower cost in terms of externalities, then it would be considered truly sustainable. To investigate those externalities, the second part of the analysis focuses on the human costs associated with the various stages of nuclear energy production. Those costs are then compared to those of alternatives sources of power, and selected case studies are examined to illustrate the ultimate risks associated with nuclear power operations. By quantifying these aspects and comparing the results to alternatives in the field, a better understanding of nuclear energy technology and its potential is achieved. The reader can then ascertain whether nuclear power's reputation as being "unsustainable" is, or is not, a reputation it deserves.
ContributorsRudolph, Alexander James (Author) / Miller, Clark (Thesis director) / Richter, Jennifer (Committee member) / School of Sustainability (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05