Matching Items (3)
Filtering by

Clear all filters

133645-Thumbnail Image.png
Description
Animal psychology is the study of how animals interact with one another, their environment, and with humans. This can be done in two different settings, the wild and captivity, and through two different approaches, academic research and practice. Academic research relies primarily on behavioral observation for data collection. Practice uses

Animal psychology is the study of how animals interact with one another, their environment, and with humans. This can be done in two different settings, the wild and captivity, and through two different approaches, academic research and practice. Academic research relies primarily on behavioral observation for data collection. Practice uses behavioral observation as well, but allows for a more hands on experience and lets the practitioner make improvements in the quality of life. I interviewed two people, one who practices in captivity, and one who does research in the wild. Dr. David Bunn has done research on wild animals in Kruger National Park in South Africa for over twenty years, studying human-animal interactions. Hilda Tresz has worked in zoos nearly forty years and specializes in chimps. Working within the same field, but utilizing a different setting and approach makes a big difference in the feel of the job. Though I found many differences between the two by doing my own research and from conducting interviews, there are many similarities to note as well. The general field of animal psychology is very rewarding, requires a lot of patience, and leads to a better understanding of animal behavior and how to care for specific species of animals. Working with captive animals allows for the opportunity to make a big difference in animal's lives through behavioral enrichment and general care. Working in the wild allows us to understand the innate animal behaviors displayed. Through practice, people get more hands on experience; while through research, you get to observe animals in their native habitats. Each setting and approach has it's own benefits depending on what each person's goals are for their job.
ContributorsDaniel, Mckenna Lynne (Author) / Childers, Daniel (Thesis director) / Hall, Sharon (Committee member) / School of Social and Behavioral Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133253-Thumbnail Image.png
Description
Elevated nitrate (NO3-) concentration in streams and rivers has contributed to environmental problems such as downstream eutrophication and loss of biodiversity. Sycamore Creek in Arizona is nitrogen limited, but previous studies have demonstrated high potential for denitrification, a microbial process in which biologically active NO3- is reduced to relatively inert

Elevated nitrate (NO3-) concentration in streams and rivers has contributed to environmental problems such as downstream eutrophication and loss of biodiversity. Sycamore Creek in Arizona is nitrogen limited, but previous studies have demonstrated high potential for denitrification, a microbial process in which biologically active NO3- is reduced to relatively inert dinitrogen (N2) gas. Oak Creek is similarly nitrogen limited, but NO3- concentration in reaches surrounded by agriculture can be double that of other reaches. We employed a denitrification enzyme assay (DEA) to compare potential denitrification rate between differing land uses in Oak Creek and measured whole system N2 flux using a membrane inlet mass spectrometer to compare differences in actual denitrification rates at Sycamore and Oak Creek. We anticipated that NO3- would be an important limiting factor for denitrifiers; consequentially, agricultural land use reaches within Oak Creek would have the highest potential denitrification rate. We expected in situ denitrification rate to be higher in Oak Creek than Sycamore Creek due to elevated NO3- concentration, higher discharge, and larger streambed surface area. DEA results are forthcoming, but analysis of potassium chloride (KCl) extraction data showed that there were no significant differences between sites in sediment extractable NO3- on either a dry mass or organic mass basis. Whole-reach denitrification rate was inconclusive in Oak Creek, and though a significant positive flux in N2 from upstream to downstream was measured in Sycamore Creek, the denitrification rate was not significantly different from 0 after accounting for reaeration, suggesting that denitrification does not account for a significant portion of the NO3- uptake in Sycamore Creek. Future work is needed to address the specific factors limiting denitrification in this system.
ContributorsCaulkins, Corey Robert (Author) / Grimm, Nancy (Thesis director) / Childers, Daniel (Committee member) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
131264-Thumbnail Image.png
Description
Freshwater ecosystems are increasingly threatened by anthropogenic eutrophication (Kolzau et al., 2014) and require mitigation efforts to prevent oxygen depletion and subsequent biodiversity loss. Tres Rios Constructed Treatment Wetland (CTW) relies on wetland ecosystem functioning to reduce nutrient concentrations in order to meet regulatory guidelines. I investigated the impact of

Freshwater ecosystems are increasingly threatened by anthropogenic eutrophication (Kolzau et al., 2014) and require mitigation efforts to prevent oxygen depletion and subsequent biodiversity loss. Tres Rios Constructed Treatment Wetland (CTW) relies on wetland ecosystem functioning to reduce nutrient concentrations in order to meet regulatory guidelines. I investigated the impact of solar irradiance, temperature, and nutrient availability on aquatic net primary productivity, ecosystem respiration, and nutrient cycling using statistical analysis and quantitative modeling informed by field data generated by ASU’s Wetland Ecosystem Ecology Lab (WEEL) in partnership with the City of Phoenix Water Services Department. I found that the extent of daily solar insolation controls Aquatic Net Primary Productivity (ANPP) rates and the seasonal aquatic nutrient processing capacity of Tres Rios, resulting in the following approximate relationship: ANPP = 0.001344(W/m²) - 0.32634 (r² = 0.259; p = 0.005).

This formula was used to estimate the nutrient uptake performance of aquatic primary producers from sampling observations; ANPP accounted for 16.26 metric tons of system wide N uptake, while aquatic ER contributed 6.07 metric tons N of nighttime remineralization and 5.7 metric tons of N throughout the water column during the day. The estimated yearly net aquatic N flux is 4.49 metric tons uptake, compared to about 12 metric tons yearly N uptake by the vegetated marsh (Treese, 2019). However, not accounting for animal respiration results in an underestimation of system-wide N remineralization, and not accounting for soil processes results in an underestimation of N uptake.
ContributorsEvans, Joseph Barrett (Author) / Childers, Daniel (Thesis director) / Hartnett, Hilairy (Committee member) / Watts College of Public Service & Community Solut (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05