Matching Items (2)
Filtering by

Clear all filters

141387-Thumbnail Image.png
Description

Objectives: We estimated neighborhood effects of population characteristics and built and natural environments on deaths due to heat exposure in Maricopa County, Arizona (2000–2008).

Methods: We used 2000 U.S. Census data and remotely sensed vegetation and land surface temperature to construct indicators of neighborhood vulnerability and a geographic information system to

Objectives: We estimated neighborhood effects of population characteristics and built and natural environments on deaths due to heat exposure in Maricopa County, Arizona (2000–2008).

Methods: We used 2000 U.S. Census data and remotely sensed vegetation and land surface temperature to construct indicators of neighborhood vulnerability and a geographic information system to map vulnerability and residential addresses of persons who died from heat exposure in 2,081 census block groups. Binary logistic regression and spatial analysis were used to associate deaths with neighborhoods.

Results: Neighborhood scores on three factors—socioeconomic vulnerability, elderly/isolation, and unvegetated area—varied widely throughout the study area. The preferred model (based on fit and parsimony) for predicting the odds of one or more deaths from heat exposure within a census block group included the first two factors and surface temperature in residential neighborhoods, holding population size constant. Spatial analysis identified clusters of neighborhoods with the highest heat vulnerability scores. A large proportion of deaths occurred among people, including homeless persons, who lived in the inner cores of the largest cities and along an industrial corridor.

Conclusions: Place-based indicators of vulnerability complement analyses of person-level heat risk factors. Surface temperature might be used in Maricopa County to identify the most heat-vulnerable neighborhoods, but more attention to the socioecological complexities of climate adaptation is needed.

ContributorsHarlan, Sharon L. (Author) / Declet-Barreto, Juan H. (Author) / Stefanov, William L. (Author) / Petitti, Diana B. (Author)
Created2013-02-01
141389-Thumbnail Image.png
Description

Human exposure to excessively warm weather, especially in cities, is an increasingly important public health problem. This study examined heat-related health inequalities within one city in order to understand the relationships between the microclimates of urban neighborhoods, population characteristics, thermal environments that regulate microclimates, and the resources people possess to

Human exposure to excessively warm weather, especially in cities, is an increasingly important public health problem. This study examined heat-related health inequalities within one city in order to understand the relationships between the microclimates of urban neighborhoods, population characteristics, thermal environments that regulate microclimates, and the resources people possess to cope with climatic conditions. A simulation model was used to estimate an outdoor human thermal comfort index (HTCI) as a function of local climate variables collected in 8 diverse city neighborhoods during the summer of 2003 in Phoenix, USA. HTCI is an indicator of heat stress, a condition that can cause illness and death. There were statistically significant differences in temperatures and HTCI between the neighborhoods during the entire summer, which increased during a heat wave period. Lower socioeconomic and ethnic minority groups were more likely to live in warmer neighborhoods with greater exposure to heat stress. High settlement density, sparse vegetation, and having no open space in the neighborhood were significantly correlated with higher temperatures and HTCI. People in warmer neighborhoods were more vulnerable to heat exposure because they had fewer social and material resources to cope with extreme heat. Urban heat island reduction policies should specifically target vulnerable residential areas and take into account equitable distribution and preservation of environmental resources.

ContributorsHarlan, Sharon L. (Author) / Brazel, Anthony J. (Author) / Prashad, Lela (Author) / Stefanov, William L. (Author) / Larsen, Larissa (Author)
Created2006-09-25