Matching Items (3)
Filtering by

Clear all filters

152310-Thumbnail Image.png
Description
The wide adoption and continued advancement of information and communications technologies (ICT) have made it easier than ever for individuals and groups to stay connected over long distances. These advances have greatly contributed in dramatically changing the dynamics of the modern day workplace to the point where it is now

The wide adoption and continued advancement of information and communications technologies (ICT) have made it easier than ever for individuals and groups to stay connected over long distances. These advances have greatly contributed in dramatically changing the dynamics of the modern day workplace to the point where it is now commonplace to see large, distributed multidisciplinary teams working together on a daily basis. However, in this environment, motivating, understanding, and valuing the diverse contributions of individual workers in collaborative enterprises becomes challenging. To address these issues, this thesis presents the goals, design, and implementation of Taskville, a distributed workplace game played by teams on large, public displays. Taskville uses a city building metaphor to represent the completion of individual and group tasks within an organization. Promising results from two usability studies and two longitudinal studies at a multidisciplinary school demonstrate that Taskville supports personal reflection and improves team awareness through an engaging workplace activity.
ContributorsNikkila, Shawn (Author) / Sundaram, Hari (Thesis advisor) / Byrne, Daragh (Committee member) / Davulcu, Hasan (Committee member) / Olson, Loren (Committee member) / Arizona State University (Publisher)
Created2013
137605-Thumbnail Image.png
Description
This project seeks to improve the reading and writing skills of literacy-challenged adults, specifically in developing countries, by designing and developing an interactive tablet application for unschooled adults who are passionate about learning to read. Very often in developing countries, the success rates of the literacy courses are overwhelmingly low.

This project seeks to improve the reading and writing skills of literacy-challenged adults, specifically in developing countries, by designing and developing an interactive tablet application for unschooled adults who are passionate about learning to read. Very often in developing countries, the success rates of the literacy courses are overwhelmingly low. Those who manage to gain some basic literacy skills, often relapse into illiteracy once their program has terminated. The proposed application aims to address this challenge by providing an easy-to-use media environment for independent literacy learning on a lightweight portable device. This also offers opportunity to learn at the time and place convenient to the user, which is additionally supported by motivating and engaging instruction. For this thesis, we focus on the design of the system and have developed a working prototype.
ContributorsIsmail, Aziza (Author) / Byrne, Daragh (Thesis director) / Hayes, Elisabeth (Committee member) / Abadzi, Helen (Committee member) / Barrett, The Honors College (Contributor) / School of Arts, Media and Engineering (Contributor)
Created2013-05
154201-Thumbnail Image.png
Description
Multifunctional oxide thin-films grown on silicon and several oxide substrates have been characterized using High Resolution (Scanning) Transmission Electron Microscopy (HRTEM), Energy-Dispersive X-ray Spectroscopy (EDX), and Electron Energy-Loss Spectroscopy (EELS). Oxide thin films grown on SrTiO3/Si pseudo-substrate showed the presence of amorphised SrTiO3 (STO) at the STO/Si interface. Oxide/oxide interfaces

Multifunctional oxide thin-films grown on silicon and several oxide substrates have been characterized using High Resolution (Scanning) Transmission Electron Microscopy (HRTEM), Energy-Dispersive X-ray Spectroscopy (EDX), and Electron Energy-Loss Spectroscopy (EELS). Oxide thin films grown on SrTiO3/Si pseudo-substrate showed the presence of amorphised SrTiO3 (STO) at the STO/Si interface. Oxide/oxide interfaces were observed to be atomically clean with very few defects.

Al-doped SrTiO3 thin films grown on Si were of high crystalline quality. The Ti/O ratio estimated from EELS line scans revealed that substitution of Ti by Al created associated O vacancies. The strength of the crystal field in STO was measured using EELS, and decreased by ~1.0 eV as Ti4+ was substituted by Al3+. The damping of O-K EELS peaks confirmed the rise in oxygen vacancies. For Co-substituted STO films grown on Si, the EDS and EELS spectra across samples showed Co doping was quite random. The substitution of Ti4+ with Co3+ or Co2+ created associated oxygen vacancies for charge balance. Presence of oxygen vacancies was also confirmed by shift of Ti-L EELS peaks towards lower energy by ~0.4 eV. The crystal-field strength decreased by ~0.6 eV as Ti4+ was partially substituted by Co3+ or Co2+.

Spinel Co3O4 thin films grown on MgAl2O4 (110) were observed to have excellent crystalline quality. The structure of the Co3O4/MgAl2O4 interface was determined using HRTEM and image simulations. It was found that MgAl2O4 substrate is terminated with Al and oxygen. Stacking faults and associated strain fields in spinel Co3O4 were found along [111], [001], and [113] using Geometrical Phase Analysis.

NbO2 films on STO (111) were observed to be tetragonal with lattice parameter of 13.8 Å and NbO films on LSAT (111) were observed to be cubic with lattice parameter of 4.26 Å. HRTEM showed formation of high quality NbOx films and excellent coherent interface. HRTEM of SrAl4 on LAO (001) confirmed an island growth mode. The SrAl4 islands were highly crystalline with excellent epitaxial registry with LAO. By comparing HRTEM images with image simulations, the interface structure was determined to consist of Sr-terminated SrAl4 (001) on AlO2-terminated LAO (001).
ContributorsDhamdhere, Ajit (Author) / Smith, David J. (Thesis advisor) / McCartney, Martha R. (Committee member) / Chamberlin, Ralph (Committee member) / Ponce, Fernando (Committee member) / Arizona State University (Publisher)
Created2015