Matching Items (3)
Filtering by

Clear all filters

155718-Thumbnail Image.png
Description
This dissertation is focused on environmental releases from U.S. wastewater infrastructure of recently introduced, mass-produced insecticides, namely neonicotinoids as well as fipronil and its major degradates (sulfone, sulfide, amide, and desulfinyl derivatives), jointly known as fiproles. Both groups of compounds recently have caught the attention of regulatory agencies worldwide due

This dissertation is focused on environmental releases from U.S. wastewater infrastructure of recently introduced, mass-produced insecticides, namely neonicotinoids as well as fipronil and its major degradates (sulfone, sulfide, amide, and desulfinyl derivatives), jointly known as fiproles. Both groups of compounds recently have caught the attention of regulatory agencies worldwide due to their toxic effects on pollinators and on aquatic invertebrates at very low, part-per-trillion levels (Chapter 1). Mass balance studies conducted for 13 U.S. wastewater treatment plants (WWTPs) showed ubiquitous occurrence (3-666 ng/L) and persistence of neonicotinoids (Chapter 2). For the years 2001 through 2016, a longitudinal nationwide study was conducted on the occurrence of fiproles, via analysis of sludge as well as raw and treated wastewater samples. Sludge analysis revealed ubiquitous fiprole occurrence since 2001 (0.2-385 µg/kg dry weight) and a significant increase (2.4±0.3-fold; p<0.005) to elevated levels found both in 2006/7 and 2015/6. This study established a marked persistence of fiproles during both wastewater and sludge treatment, while also identifying non-agricultural uses as a major source of fiprole loading to wastewater (Chapter 3). Eight WWTPs were monitored in Northern California to assess pesticide inputs into San Francisco Bay from wastewater discharge. Per-capita-contaminant-loading calculations identified flea and tick control agents for use on pets as a previously underappreciated source term dominating the mass loading of insecticides to WWTPs in sewage and to the Bay in treated wastewater (Chapter 4). A nationwide assessment of fipronil emissions revealed that pet products, while representing only 22±7% of total fipronil usage (2011-2015), accounted for 86±5% of the mass loading to U.S. surface waters (Chapter 5). In summary, the root cause for considerable annual discharges into U.S. surface waters of the neonicotinoid imidacloprid (3,700-5,500 kg/y) and of fipronil related compounds (1,600-2,400 kg/y) is domestic rather than agricultural insecticide use. Reclaimed effluent from U.S. WWTPs contained insecticide levels that exceed toxicity benchmarks for sensitive aquatic invertebrates in 83% of cases for imidacloprid and in 67% of cases for fipronil. Recommendations are provided on how to limit toxic inputs in the future.
ContributorsSadaria, Akash Mahendra (Author) / Halden, Rolf (Thesis advisor) / Fraser, Matthew (Committee member) / Perreault, Francois (Committee member) / Mascaro, Giuseppe (Committee member) / Arizona State University (Publisher)
Created2017
132548-Thumbnail Image.png
Description
Alzheimer’s disease (AD) is a neurodegenerative disease resulting in loss of cognitive function and is not considered part of the typical aging process. Recently, research is being conducted to study environmental effects on AD because the exact molecular mechanisms behind AD are not known. The associations between various toxins and

Alzheimer’s disease (AD) is a neurodegenerative disease resulting in loss of cognitive function and is not considered part of the typical aging process. Recently, research is being conducted to study environmental effects on AD because the exact molecular mechanisms behind AD are not known. The associations between various toxins and AD have been mixed and unclear. In order to better understand the role of the environment and toxic substances on AD, we conducted a literature review and geospatial analysis of environmental, specifically wastewater, contaminants that have biological plausibility for increasing risk of development or exacerbation of AD. This literature review assisted us in selecting 10 wastewater toxic substances that displayed a mixed or one-sided relationship with the symptoms or prevalence of Alzheimer’s for our data analysis. We utilized data of toxic substances in wastewater treatment plants and compared them to the crude rate of AD in the different Census regions of the United States to test for possible linear relationships. Using data from the Targeted National Sewage Sludge Survey (TNSSS) and the Centers for Disease Control and Prevention (CDC), we developed an application using R Shiny to allow users to interactively visualize both datasets as choropleths of the United States and understand the importance of this area of research. Pearson’s correlation coefficient was calculated resulting in arsenic and cadmium displaying positive linear correlations with AD. Other analytes from this statistical analysis demonstrated mixed correlations with AD. This application and data analysis serve as a model in the methodology for further geospatial analysis on AD. Further data analysis and visualization at a lower level in terms of scope is necessary for more accurate and reliable evidence of a causal relationship between the wastewater substance analytes and AD.
GitHub Repository: https://github.com/komal-agrawal/AD_GIS.git
ContributorsAgrawal, Komal (Author) / Scotch, Matthew (Thesis director) / Halden, Rolf (Committee member) / College of Health Solutions (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
168763-Thumbnail Image.png
Description
Energy can be harvested from wastewater using microbial fuel cells (MFC). In order to increase power generation, MFCs can be scaled-up. The MFCs are designed with two air cathodes and two anode electrodes. The limiting electrode for power generation is the cathode and in order to maximize power, the cathodes

Energy can be harvested from wastewater using microbial fuel cells (MFC). In order to increase power generation, MFCs can be scaled-up. The MFCs are designed with two air cathodes and two anode electrodes. The limiting electrode for power generation is the cathode and in order to maximize power, the cathodes were made out of a C-N-Fe catalyst and a polytetrafluoroethylene binder which had a higher current production at -3.2 mA/cm2 than previous carbon felt cathodes at -0.15 mA/cm2 at a potential of -0.29 V. Commercial microbial fuel cells from Aquacycl were tested for their power production while operating with simulated blackwater achieved an average of 5.67 mW per cell. The small MFC with the C-N-Fe catalyst and one cathode was able to generate 8.7 mW. Imitating the Aquacycl cells, the new MFC was a scaled-up version of the small MFC where the cathode surface area increased from 81 cm2 to 200 cm2. While the MFC was operating with simulated blackwater, the peak power produced was 14.8 mW, more than the smaller MFC, but only increasing in the scaled-up MFC by 1.7 when the surface area of the cathode increased by 2.46. Further long-term application can be done, as well as operating multiple MFCs in series to generate more power and improve the design.
ContributorsRussell, Andrea (Author) / Torres, Cesar (Thesis advisor) / Garcia Segura, Sergio (Committee member) / Fraser, Matthew (Committee member) / Arizona State University (Publisher)
Created2022