Matching Items (21)
Filtering by

Clear all filters

150719-Thumbnail Image.png
Description
This dissertation presents a portable methodology for holistic planning and optimization of right of way infrastructure rehabilitation that was designed to generate monetary savings when compared to planning that only considers single infrastructure components. Holistic right of way infrastructure planning requires simultaneous consideration of the three right of way infrastructure

This dissertation presents a portable methodology for holistic planning and optimization of right of way infrastructure rehabilitation that was designed to generate monetary savings when compared to planning that only considers single infrastructure components. Holistic right of way infrastructure planning requires simultaneous consideration of the three right of way infrastructure components that are typically owned and operated under the same municipal umbrella: roads, sewer, and water. The traditional paradigm for the planning of right way asset management involves operating in silos where there is little collaboration amongst different utility departments in the planning of maintenance, rehabilitation, and renewal projects. By collaborating across utilities during the planning phase, savings can be achieved when collocated rehabilitation projects from different right of way infrastructure components are synchronized to occur at the same time. These savings are in the form of shared overhead and mobilization costs, and roadway projects providing open space for subsurface utilities. Individual component models and a holistic model that utilize evolutionary algorithms to optimize five year maintenance, rehabilitation, and renewal plans for the road, sewer, and water components were created and compared. The models were designed to be portable so that they could be used with any infrastructure condition rating, deterioration modeling, and criticality assessment systems that might already be in place with a municipality. The models attempt to minimize the overall component score, which is a function of the criticality and condition of the segments within each network, by prescribing asset management activities to different segments within a component network while subject to a constraining budget. The individual models were designed to represent the traditional decision making paradigm and were compared to the holistic model. In testing at three different budget levels, the holistic model outperformed the individual models in the ability to generate five year plans that optimized prescribed maintenance, rehabilitation and renewal for various segments in order to achieve the goal of improving the component score. The methodology also achieved the goal of being portable, in that it is compatible with any condition rating, deterioration, and criticality system.
ContributorsCarey, Brad David (Author) / Lueke, Jason S (Thesis advisor) / Ariaratnam, Samuel (Committee member) / Bashford, Howard (Committee member) / Arizona State University (Publisher)
Created2012
156772-Thumbnail Image.png
Description

Motivated by the need for cities to prepare and be resilient to unpredictable future weather conditions, this dissertation advances a novel infrastructure development theory of “safe-to-fail” to increase the adaptive capacity of cities to climate change. Current infrastructure development is primarily reliant on identifying probable risks to engineered systems and

Motivated by the need for cities to prepare and be resilient to unpredictable future weather conditions, this dissertation advances a novel infrastructure development theory of “safe-to-fail” to increase the adaptive capacity of cities to climate change. Current infrastructure development is primarily reliant on identifying probable risks to engineered systems and making infrastructure reliable to maintain its function up to a designed system capacity. However, alterations happening in the earth system (e.g., atmosphere, oceans, land, and ice) and in human systems (e.g., greenhouse gas emission, population, land-use, technology, and natural resource use) are increasing the uncertainties in weather predictions and risk calculations and making it difficult for engineered infrastructure to maintain intended design thresholds in non-stationary future. This dissertation presents a new way to develop safe-to-fail infrastructure that departs from the current practice of risk calculation and is able to manage failure consequences when unpredicted risks overwhelm engineered systems.

This dissertation 1) defines infrastructure failure, refines existing safe-to-fail theory, and compares decision considerations for safe-to-fail vs. fail-safe infrastructure development under non-stationary climate; 2) suggests an approach to integrate the estimation of infrastructure failure impacts with extreme weather risks; 3) provides a decision tool to implement resilience strategies into safe-to-fail infrastructure development; and, 4) recognizes diverse perspectives for adopting safe-to-fail theory into practice in various decision contexts.

Overall, this dissertation advances safe-to-fail theory to help guide climate adaptation decisions that consider infrastructure failure and their consequences. The results of this dissertation demonstrate an emerging need for stakeholders, including policy makers, planners, engineers, and community members, to understand an impending “infrastructure trolley problem”, where the adaptive capacity of some regions is improved at the expense of others. Safe-to-fail further engages stakeholders to bring their knowledge into the prioritization of various failure costs based on their institutional, regional, financial, and social capacity to withstand failures. This approach connects to sustainability, where city practitioners deliberately think of and include the future cost of social, environmental and economic attributes in planning and decision-making.

ContributorsKim, Yeowon (Author) / Chester, Mikhail (Thesis advisor) / Eakin, Hallie (Committee member) / Redman, Charles (Committee member) / Miller, Thaddeus R. (Committee member) / Arizona State University (Publisher)
Created2018
156828-Thumbnail Image.png
Description
Infrastructure are increasingly being recognized as too rigid to quickly adapt to a changing climate and a non-stationary future. This rigidness poses risks to and impacts on infrastructure service delivery and public welfare. Adaptivity in infrastructure is critical for managing uncertainties to continue providing services, yet little is known about

Infrastructure are increasingly being recognized as too rigid to quickly adapt to a changing climate and a non-stationary future. This rigidness poses risks to and impacts on infrastructure service delivery and public welfare. Adaptivity in infrastructure is critical for managing uncertainties to continue providing services, yet little is known about how infrastructure can be made more agile and flexible towards improved adaptive capacity. A literature review identified approximately fifty examples of novel infrastructure and technologies which support adaptivity through one or more of ten theoretical competencies of adaptive infrastructure. From these examples emerged several infrastructure forms and possible strategies for adaptivity, including smart technologies, combined centralized/decentralized organizational structures, and renewable electricity generation. With institutional and cultural support, such novel structures and systems have the potential to transform infrastructure provision and management.
ContributorsGilrein, Erica (Author) / Chester, Mikhail (Thesis advisor) / Garcia, Margaret (Committee member) / Allenby, Braden (Committee member) / Arizona State University (Publisher)
Created2018
157262-Thumbnail Image.png
Description
Cities are increasingly using nature-based approaches to address urban sustainability challenges. These solutions leverage the ecological processes associated with existing or newly constructed Urban Ecological Infrastructure (UEI) to address issues through ecosystem services (e.g. stormwater retention or treatment). The growing use of UEI to address urban sustainability challenges can bring

Cities are increasingly using nature-based approaches to address urban sustainability challenges. These solutions leverage the ecological processes associated with existing or newly constructed Urban Ecological Infrastructure (UEI) to address issues through ecosystem services (e.g. stormwater retention or treatment). The growing use of UEI to address urban sustainability challenges can bring together teams of urban researchers and practitioners to co-produce UEI design, monitoring and maintenance. However, this co-production process received little attention in the literature, and has not been studied in the Phoenix Metro Area.

I examined several components of a co-produced design process and related project outcomes associated with a small-scale UEI project – bioswales installed at the Arizona State University (ASU) Orange Mall and Student Pavilion in Tempe, AZ. Specifically, I explored the social design process and ecohydrological and biogeochemical outcomes associated with development of an ecohydrological monitoring protocol for assessing post-construction landscape performance of this site. The monitoring protocol design process was documented using participant observation of collaborative project meetings, and semi-structured interviews with key researchers and practitioners. Throughout this process, I worked together with researchers and practitioners to co-produced a suite of ecohydrological metrics to monitor the performance of the bioswales (UEI) constructed at Orange Mall, with an emphasis on understanding stormwater dynamics. I then installed and operated monitoring equipment from Summer 2018 to Spring 2019 to generate data that can be used to assess system performance with respect to the co-identified performance metrics.

The co-production experience resulted in observable change in attitudes both at the individual and institutional level with regards to the integration and use of urban ecological research to assess and improve UEI design. My ecological monitoring demonstrated that system performance met design goals with regards to stormwater capture, and water quality data suggest the system’s current design has some capacity for stormwater treatment. These data and results are being used by practitioners at ASU and their related design partners to inform future design and management of UEI across the ASU campus. More broadly, this research will provide insights into improving the monitoring, evaluation, and performance efficacy associated with collaborative stormwater UEI projects, independent of scale, in arid cities.
ContributorsSanchez, Christopher A (Author) / Childers, Daniel L. (Thesis advisor) / Cheng, Chingwen (Committee member) / York, Abigail M (Committee member) / Arizona State University (Publisher)
Created2019
153751-Thumbnail Image.png
Description
ABSTRACT



Millions of US aging individuals are at risk for mild cognitive impairment (MCI), the early stage of Alzheimer's disease (Ad). Ad is progressive; there is no clinical cure to date. Certain drugs treat symptoms yet fog memory. Memory activity is critical to strengthen cognition. The Phoenix

ABSTRACT



Millions of US aging individuals are at risk for mild cognitive impairment (MCI), the early stage of Alzheimer's disease (Ad). Ad is progressive; there is no clinical cure to date. Certain drugs treat symptoms yet fog memory. Memory activity is critical to strengthen cognition. The Phoenix Art Museum (PAM) and Banner Alzheimer's Institute (BAI) founded the Arts Engagement Program (AEP), a non-clinical, specialized arts program for adults with (MCI) and their caregiver. The museum environment is thought to enhance communication and raise self-esteem in certain MCI individuals. The interior surroundings may spurn memory enhancement. Scholarship to substantiate this theory is minimal; therefore, further studies are required. Empirical literature regarding design elements researched specific types of memory impairment was employed. The hypotheses that design elements of the museum's infrastructure and design elements from art themes enhance memory, and the results of these findings when applied to other environments enhance memory emerged. An experience-based study was performed. Semi-structured interviews noting design elements of both infrastructure and art were conducted after each of nine AEP sessions with volunteers from 8 dyads, a term used by the PAM as one caregiver and one MCI individual. The presiding docent was later interviewed. Volunteer interviews with dyads and docents was coded and ranked. Overlapping themes that tallied five or higher were considered significant due the low sample size. Results showed that neither group considered infrastructure design elements or art theme design elements a contributor to memory enhancement. The hypotheses proved null. Both groups expressed pleasure in experiencing the PAM’s environment. Keywords: MCI, infrastructure, art themes.
ContributorsHill, Carol (Author) / Shraiky, James (Thesis advisor) / Takamura, John (Committee member) / Stein, Morris (Committee member) / Arizona State University (Publisher)
Created2015
155681-Thumbnail Image.png
Description
The objective of the study was to examine the impact construction document deficiencies have on heavy/civil low-bid infrastructure projects. It encompasses the expertise of 202 heavy/civil construction professionals comprised of contactors and public project owners. The study was designed to determine the frequency and timing of when a contractor discovers

The objective of the study was to examine the impact construction document deficiencies have on heavy/civil low-bid infrastructure projects. It encompasses the expertise of 202 heavy/civil construction professionals comprised of contactors and public project owners. The study was designed to determine the frequency and timing of when a contractor discovers construction document deficiencies on heavy/civil low bid projects. The information was correlated with further study data of when a contractor ultimately reports the discovered construction document deficiencies to the public project owner. This research data was compiled and analyzed to determine if contractors are withholding construction document deficiencies from public owners until after the project contract has been executed. The withholding of document deficiencies can benefit contractors by resulting in additional owner incurred costs and potential justification for project time extensions. As a result, further research was required to examine the impact construction document deficiencies have on project cost and schedule. Based on the study findings, it has led to the development of a Contractor Document Review Assessment. The Contractor Document Review Assessment is a risk mitigation device in which contractors and public project owners can identify construction document deficiencies on heavy/civil low-bid construction projects before the project contract has been executed.
ContributorsPesek, Anthony Edward (Author) / Sullivan, Kenneth (Thesis advisor) / Badger, William (Committee member) / Bingham, Evan (Committee member) / Arizona State University (Publisher)
Created2017
155210-Thumbnail Image.png
Description
This ethnography follows mobile trajectories on roads in Nairobi to investigate how the transformation of transport infrastructure has affected people’s everyday mobility. I follow diverse mobile actors, including pedestrians, handcart (mkokoteni) workers, and minibus (matatu) operators, whose practices and ideas of moving are central to understand the city’s ordinary mobility.

This ethnography follows mobile trajectories on roads in Nairobi to investigate how the transformation of transport infrastructure has affected people’s everyday mobility. I follow diverse mobile actors, including pedestrians, handcart (mkokoteni) workers, and minibus (matatu) operators, whose practices and ideas of moving are central to understand the city’s ordinary mobility. I also situate their everyday ways of moving in the rules, plans and ideas of regulators, such as government officials, engineers and international experts, who focus on decongesting roads and attempt to reshape Nairobi’s better urban mobility. Despite official and popular aspirations for building new roads and other public transport infrastructure, I argue that many mobile actors still pursue and struggle with preexisting and non-motorized means and notions of moving that are not reflected in the promise of and plans for better mobility. This ethnography also reveals how certain important forms of ordinary mobility have been socially marginalized. It explores what kinds of difficulties are created when the infrastructural blueprints of road “experts” and the notions that politicians promote about a new urban African mobility fail to match the reality of everyday road use by the great majority of Nairobi residents. By employing mobile participant observation of the practices of moving, this study also finds important ethnographic implications and suggestions for the study of mobile subjects in an African city where old and new forms of mobility collide.
ContributorsKim, Tae-Eun (Author) / Eder, James (Thesis advisor) / Bolin, Robert (Committee member) / Swadener, Elizabeth (Committee member) / Ballestero, Andrea (Committee member) / Arizona State University (Publisher)
Created2016
149457-Thumbnail Image.png
Description
Front End Planning (FEP) is a critical process for uncovering project unknowns, while developing adequate scope definition following a structured approach for the project execution process. FEP for infrastructure projects assists in identifying and mitigating issues such as right-of-way concerns, utility adjustments, environmental hazards, logistic problems, and permitting requirements. This

Front End Planning (FEP) is a critical process for uncovering project unknowns, while developing adequate scope definition following a structured approach for the project execution process. FEP for infrastructure projects assists in identifying and mitigating issues such as right-of-way concerns, utility adjustments, environmental hazards, logistic problems, and permitting requirements. This thesis describes a novel and effective risk management tool that has been developed by the Construction Industry Institute (CII) called the Project Definition Rating Index (PDRI) for infrastructure projects. Input from industry professionals from over 30 companies was used in the tool development which is specifically focused on FEP. Data from actual projects are given showing the efficacy of the tool. Critical success factors for FEP of infrastructure projects are shared. The research shows that a finite and specific list of issues related to scope definition of infrastructure projects can be developed. The thesis also concludes that the PDRI score indicates the current level of scope definition and corresponds to project performance. Infrastructure projects with low PDRI scores outperform projects with high PDRI scores.
ContributorsBingham, Evan Dale (Author) / Gibson Jr., G. Edward (Thesis advisor) / Badger, William (Committee member) / Ariaratnam, Samuel (Committee member) / Arizona State University (Publisher)
Created2010
168408-Thumbnail Image.png
Description
Traditional infrastructure design approaches were born with industrialization. During this time the relatively stable environments allowed infrastructure systems to reliably provide service with networks designed to precise parameters and organizations fixated on maximizing efficiency. Now, infrastructure systems face the challenge of operating in the Anthropocene, an era of complexity. The

Traditional infrastructure design approaches were born with industrialization. During this time the relatively stable environments allowed infrastructure systems to reliably provide service with networks designed to precise parameters and organizations fixated on maximizing efficiency. Now, infrastructure systems face the challenge of operating in the Anthropocene, an era of complexity. The environments in which infrastructure systems operate are changing more rapidly than the technologies and governance systems of infrastructure. Infrastructure systems will need to be resilient to navigate stability and instability and avoid obsolescence. This dissertation addresses how infrastructure systems could be designed for the Anthropocene, assessing technologies able to operate with uncertainty, rethinking the principles of technology design, and restructuring infrastructure governance. Resilience, in engineering, has often been defined as resistance to known disturbances with a focus on infrastructure assets. Resilience, more broadly reviewed, includes resistance, adaptation, and transformation across physical and governance domains. This dissertation constructs a foundation for resilient infrastructure through an assessment of resilience paradigms in engineering, complexity and deep uncertainty (Chapter 2), ecology (Chapter 3), and organizational change and leadership (Chapter 4). The second chapter reconciles frameworks of complexity and deep uncertainty to help infrastructure managers navigate the instability infrastructure systems face, with a focus on climate change. The third chapter identifies competencies of resilience in infrastructure theory and practice and compares those competencies with ‘Life’s Principles’ in ecology, presenting opportunities for growth and innovation in infrastructure resilience and highlighting the need for satisficed (to satisfy and suffice) solutions. The fourth chapter navigates pressures of exploitation and exploration that infrastructure institutions face during periods of stability and instability, proposing leadership capabilities to enhance institutional resilience. Finally, the dissertation is concluded with a chapter synthesizing the previous chapters, providing guidance for alternative design approaches for advancing resilient infrastructure. Combined, the work challenges the basic mental models used by engineers when approaching infrastructure design and recommends new ways of doing and thinking for the accelerating and increasingly uncertain conditions of the future.
ContributorsHelmrich, Alysha Marie (Author) / Chester, Mikhail V (Thesis advisor) / Grimm, Nancy B (Committee member) / Garcia, Margaret (Committee member) / Meerow, Sara (Committee member) / Arizona State University (Publisher)
Created2021
187430-Thumbnail Image.png
Description
Infrastructure managers are continually challenged to reorient their organizations to mitigate disturbances. Disturbances to infrastructure constantly intensify, and the world and its intricate systems are becoming more connected and complex. This complexity often leads to disturbances and cascading failures. Some of these events unfold in extreme ways previously unimagined (i.e.,

Infrastructure managers are continually challenged to reorient their organizations to mitigate disturbances. Disturbances to infrastructure constantly intensify, and the world and its intricate systems are becoming more connected and complex. This complexity often leads to disturbances and cascading failures. Some of these events unfold in extreme ways previously unimagined (i.e., Black Swan events). Infrastructure managers currently seek pathways through this complexity. To this end, reimagined – multifaceted – definitions of resilience must inform future decisions. Moreover, the hazardous environment of the Anthropocene demands flexibility and dynamic reprioritization of infrastructure and resources during disturbances. In this dissertation, the introduction will briefly explain foundational concepts, frameworks, and models that will inform the rest of this work. Chapter 2 investigates the concept of dynamic criticality: the skill to reprioritize amidst disturbances, repeating this process with each new disturbance. There is a dearth of insight requisite skillsets for infrastructure organizations to attain dynamic criticality. Therefore, this dissertation searches other industries and finds goals, structures, sensemaking, and strategic best practices to propose a contextualized framework for infrastructure. Chapters 3 and 4 seek insight into modeling infrastructure interdependencies and cascading failure to elucidate extreme outcomes such as Black Swans. Chapter 3 explores this concept through a theoretical analysis considering the use of realistic but fictional (i.e., synthetic) models to simulate interdependent behavior and cascading failures. This chapter also discusses potential uses of synthetic networks for infrastructure resilience research and barriers to future success. Chapter 4 tests the preceding theoretical analysis with an empirical study. Chapter 4 builds realistic networks with dependency between power and water models and simulates cascading failure. The discussion considers the future application of similar modeling efforts and how these techniques can help infrastructure managers scan the horizon for Black Swans. Finally, Chapter 5 concludes the dissertation with a synthesis of the findings from the previous chapters, discusses the boundaries and limitations, and proposes inspirations for future work.
ContributorsHoff, Ryan Michael (Author) / Chester, Mikhail V (Thesis advisor) / Allenby, Braden (Committee member) / Johnson, Nathan (Committee member) / McPhearson, Timon (Committee member) / Arizona State University (Publisher)
Created2023